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ABSTRACT
Streaming data collection is indispensable for stream data analysis,
such as event monitoring. However, publishing these data directly
leads to privacy leaks.𝑤-event privacy is a valuable tool to protect in-
dividual privacy within a given time window while maintaining high
accuracy in data collection. Most existing 𝑤-event privacy studies
on infinite data stream only focus on homogeneous privacy require-
ments for all users. In this paper, we propose personalized 𝑤-event
privacy protection that allows different users to have different pri-
vacy requirements in private data stream estimation. Specifically,
we design a mechanism that allows users to maintain constant pri-
vacy requirements at each time slot, namely Personalized Window
Size Mechanism (PWSM). Then, we propose two solutions to accu-
rately estimate stream data statistics while achieving𝒘-event level 𝝐
personalized differential privacy ( (𝒘, 𝝐)-EPDP), namely Personal-
ized Budget Distribution (PBD) and Peronalized Budget Absorption
(PBA). PBD always provides at least the same privacy budget for
the next time step as the amount consumed in the previous release.
PBA fully absorbs the privacy budget from the previous 𝑘 time slots,
while also borrowing from the privacy budget of the next 𝑘 time
slots, to increase the privacy budget for the current time slot. We
prove that both PBD and PBA outperform the state-of-the-art private
stream estimation methods while satisfying the privacy requirements
of all users. We demonstrate the efficiency and effectiveness of our
PBD and PBA on both real and synthetic data sets, compared with
the recent uniformity 𝑤-event approaches, Budget Distribution (BD)
and Budget Absorption (BA). Our PBD achieves 68% less error than
BD on average on real data sets. Besides, our PBA achieves 24.9%
less error than BA on average on synthetic data sets.
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Figure 1: Different event window sizes for different time slots.

1 INTRODUCTION
With the popularity of smart devices and high-quality wireless net-
works, people can easily access the internet and utilize online ser-
vices. They continuously report data to platforms and receive ser-
vices like log stream analysis [34], event monitoring [19], and video
querying [27]. To provide better services, these platforms collect
data and conduct real-time analysis over aggregated data streams.

However, collecting stream data directly poses severe privacy
risks, causing users to refuse communication with platforms. For in-
stance, an AIDS patient may decline to participate in an investigation
due to privacy concerns [18]. To resolve this conflict, differential
privacy (DP) is proposed to protect individual privacy while ensuring
accurate data estimation [11].

Recently, 𝑤-event privacy based on DP has emerged for private
stream data collection and analysis [29, 30, 33]. It effectively pro-
tects the privacy of 𝑤 consecutive related events while offering
accurate stream statistics. However, different users may have differ-
ent privacy requirements. For instance, entertainers may be reluctant
to reveal too much about their locations (i.e., large 𝑤-event size),
while street artists may be willing to expose their locations (i.e.,
small 𝑤-event size) for more attention. Thus, if we fix the window
size 𝑤 for all users, it is hard to make everyone satisfied.

We illustrate an example of online car-hailing shown in Figure 1.

Example 1. Suppose there are 100 drivers 𝑈 = {𝑢1, ..., 𝑢100}
who provide their locations within {𝑙𝑜𝑐1, ..., 𝑙𝑜𝑐8} at each time slot.
For any driver 𝑢𝑖 , he/she is protected with 𝑤𝑖 -event privacy means
that his/her events’ locations is protected through satisfying 𝜖𝑖 -DP
within at least 𝑤𝑖 consecutive time slots, where 𝜖𝑖 is a parameter
indicating the strength of the privacy protect required by 𝑢𝑖 . For
instance, 𝑢1 wants to protect his/her location sequence within any 4
consecutive time slots. Besides, 𝑢99 and 𝑢100 want to protect their
location sequences within any 8 consecutive time slots. Suppose
for each 𝑢𝑖 ∈ 𝑈 \{𝑢99, 𝑢100}, the window size is no more than 4. To
satisfy all drivers’ privacy needs, according to traditional 𝑤-event
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privacy, we need to set the event window size as the maximal value
(i.e., 𝑤 = 8), and make full use of the privacy budget to achieve high
utility while satisfying 8-event privacy. Let 𝐴𝐸𝑎𝑣𝑔 denote the average
square error at each time slot, defined as the variance when adding
Laplace noise (i.e., 𝐴𝐸𝑎𝑣𝑔 = 2𝑏2 = 2 ×

(
1

𝜖/𝑤

)2
). Suppose his total privacy

budget 𝜖 is 1 and the platform adopts the Uniform method [22]. Then
for this example, under 8-event privacy, the average square error
at each time slot is 𝐴𝐸𝑎𝑣𝑔 = 2 × ( 𝑤𝜖 )

2 = 128. However, it is not
necessary for the first 98 drivers to set the window size as 8 (only
achieving 8-event privacy). If we set the window size as 𝑤 = 4 and
use the threshold method [20] (or the sample method [20]), then we
can get 𝐴𝐸𝑎𝑣𝑔 ≈ 2 × ( 𝑤𝜖 )

2 = 32, which is much less than the error
of traditional 8-event privacy.

In this paper, we define the Personalized 𝑤-event Private Publish-
ing for Infinite Data Streams (PWPP-IDS) problem to model person-
alized requirements in stream data publication. To solve PWPP-IDS,
there are two challenges: 1) effectively unifying the privacy budget
across all users into a single value to maximize publication utility;
2) effectively distribute each user’s personalized privacy budget to
their personalized window size to maximize publication utility.

To achieve higher publication utility, we solve PWPP-IDS with
the centralized DP model [11], where a single centralized privacy
budget is needed for publishing statistics at each time slot. Different
users may have their personalized and different privacy budgets.
If we need to satisfy the privacy requirements of every user, we
need to select the minimum privacy budget among them, which
can result in the lowest utility. How to use a privacy budget higher
than the minimum one to achieve higher utility while satisfying the
privacy requirement of user with the minimum privacy? It seems
unachievable at a glance. We solve this challenge through elaborately
applying the Sampling Mechanism [20]. Our method theoretically
guarantees that even though the selected unified privacy budget is
higher than the minimum privacy budget, no privacy leakages for
any users exist.

Intuitively, time slots with higher changing rates contain more in-
formation and thus are more important. To maximize utility, we need
to allocate more privacy budgets to publications at these important
time slots while approximating others. How to identify important
time slots and allocate privacy budgets to achieve maximum pub-
lication utility? To address this challenge, we design two methods,
namely Personalized Budget Distribution (PBD) and Peronalized
Budget Absorption (PBA), to handle them. PBD takes an optimistic
approach, assuming few publications per window and thus allocating
larger budget portions to each publication. PBA, in contrast, assumes
that the stream data will have low changing rate thus can skip or ap-
proximate a large portion of publications. Thus, it maximizes current
publication accuracy by borrowing unused budget from skipped pub-
lications while nullifying future time slot budgets, enabling effective
approximation of subsequent publications. We demonstrate that both
PBD and PBA satisfy (𝒘, 𝝐)-EPDP and provide their average error
upper bounds. We summarize our contributions as follows.

• We formally define personalized 𝒘-event level 𝝐-Personalized
Differential Privacy for PWPP-IDS in Section 3.

• We propose a basic mechanism, Personalized Window Size Mech-
anism (PWSM), and two methods, namely Personalized Budget
Distribution (PBD) and Peronalized Budget Absorption (PBA),

to support personalized𝒘-event privacy with theoretical analyses
in Section 4.

• We test our methods on both real and synthetic data sets to demon-
strate their efficiency and effectiveness in Section 5.

2 RELATED WORK
We classify the related work in the area of data stream estimation
under differential privacy and non-uniformity differential privacy.

2.1 Data Stream Estimation under Differential
Privacy

Based on the privacy model, there are two types of data stream esti-
mation methods: centralized differential privacy [11] (CDP) based
methods and local differential privacy [4] (LDP) based methods.
Data Stream Estimation under CDP. Dwork et al. first address
the problem of Differential Privacy (DP) on data streams [13]. They
define two types of DP levels: event-level differential privacy (event-
DP) and user-level differential privacy (user-DP).

In event-DP, each single event is hidden in statistic queries. Dwork
et al. focus on the finite event scenarios and propose a binary tree
method to achieve high statistical utility while maintaining event-
DP [13]. Chan et al. extend it to infinite cases, and produce partial
summations for binary counting [7]. Dwork et al. introduce a cascade
buffer counter that updates adaptively based on stream density [12].
Bolot et al. propose decayed privacy which reduces the privacy
costs for past data [6]. Chen et al. develop PeGaSus, a perturb-
group-smooth framework for multiple queries under event-DP [8].
However, event-DP assumes all element in a stream are independent,
making it unsuitable for correlated data stream publishing.

In user-DP, all events for each user are hidden in statistic queries.
Fan et al. propose the FAST algorithm with a sampling-and-filtering
framework, counting finite stream data under user-DP [17]. Cum-
mings et al. address heterogeneous user data, estimating population-
level means while achieving user-DP [9]. However, they only con-
sider finite data. Offering user-DP for infinite data requires infinite
perturbation, leading to poor long-term utility [22].

To bridge the gap between event-DP and user-DP, Kellaris et al.
propose 𝑤-event DP for infinite streams [22]. This ensures 𝜖-DP for
any group of events within a time window of size 𝑤 . They introduce
two methods, Budget Distribution and Budget Absorption, to opti-
mize privacy budget use and estimate statistics effectively. However,
neither method handles stream data with significant changes. Wang
et al. apply the 𝑤-event concept to the FAST method, proposing a
multi-dimensional stream release mechanism called ResueDP, which
achieves accurate estimation for both rapid and slow data stream
changes [30]. A limitation of all these methods is their reliance on a
trusted server to ensure privacy.
Data Stream Estimation under LDP. To overcome the dependence
on a trusted server, LDP [4] has recently been proposed and adopted
by many major companies such as Microsoft, Apple and Google.
Erlingsson et al. introduce RAPPOR to estimate finite streams under
LDP [16]. They design a two-layer randomized response mechanism
(i.e., permanent randomized response and instantaneous random-
ized response) to protect each individual’s data. However, RAPPOR
is limited to uncorrelated stream data. To address the problem of
correlated time series data, Erlingsson et al. develop a new privacy
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model that introduces shuffling to amplify the LDP privacy level [15].
However, this model only suits finite stream data. Joseph et al. pro-
pose THRESH for evolving data under LDP [21], which consumes
privacy budget at global update time slots selected by users’ LDP
voting. However, it is not applicable to infinite streams as it assumes
a fixed number of global updates. Wang et al. extend event-level
privacy from CDP to LDP and design the efficient ToPL method
under event LDP [31]. Nevertheless, event-level LDP focuses solely
on event-level privacy, lacking privacy protection for correlated data
in streams. Bao et al. propose an (𝜖, 𝛿)-LDP method (called CGM)
for finite streaming data collection using the analytic Guassian mech-
anism, but requires periodic privacy budget renewal [3]. Ren et al.
introduce LDP-IDS for infinite streaming data collection and anal-
ysis under 𝑤-event LDP [29]. They propose two budget allocation
methods and two population allocation methods, bridging the gap
between event LDP and user LDP while improving estimation ac-
curacy. However, all these methods cannot be adopted to support
personalized event window sizes.

2.2 Non-Uniformity Differential Privacy
Recently, some studies address the non-uniform privacy require-
ments among items (table columns) or records (table rows) [28].

Alaggan et al. first examine scenarios where each database in-
stance comprises a single user’s profile [1]. They focus on varying
privacy requirements for different items and formally define Hetero-
geneous Differential Privacy (HDP).

Jorgensen et al. investigate the privacy preservation for individ-
ual rows, introducing Personalized Differential Privacy (PDP) [20].
They design two mechanisms leveraging non-uniform privacy re-
quirements to achieve better utility than standard uniform DP. Kotso-
giannis et al. recognize that different data have different sensitivity,
then define One-side Differential Privacy (OSPD) and propose algo-
rithms that truthfully release non-sensitive record samples to enhance
accuracy in DP-solutions [23].

Andrés et al. introduce a novel non-uniform privacy concept
called Geo-Indistinguishability (Geo-I), where the privacy level for
any point increases as the distance to this point decreases [2]. Wang
et al. [32] and Du et al. [10] explore PDP in spatial crowdsourcing,
and develop highly effective private task assignment methods to
satisfy diverse workers’ privacy and utility requirements. Liu et al.
investigate HDP in federated learning [26]. They assume different
clients hold DP budget and divide them into private and public parts,
then propose two methods to project the “public” clients’ models
into “private” clients’ models to improve the joint model’s utility.
However, all above studies are not suitable for stream data.

In this paper, we propose Personalized Window Size Mecha-
nism (PWSM) with two implementation methods: Personalized Bud-
get Distribution (PBD) and Peronalized Budget Absorption (PBA).
Our approach extends traditional 𝑤-event privacy mechanisms by
introducing 𝝐-Personalized Differential Privacy methods to sup-
port personalized privacy requirements. This enhancement enables
our mechanism and methods to handle both infinite correlated data
streams and personalized privacy requirements, building upon the
foundations of traditional 𝑤-event privacy mechanisms.

Table 1: Summary for related work.

Model Types Methods Is infinite
and correlated

Is personalized
privacy

Finite B-tree [13] % %

Infinite B-tree [7] % %
Adaptive-density

Counter [12] % %

Decayed Privacy [6] % %
event-level privacy

PeGaSus [8] % %

FAST [17] " %
user-level privacy Private heterogeneous

mean estimation [9] " %

BD & BA [22] " %

Centralized DP

w-event privacy
ResuseDP [30] " %

RAPPOR [16] % %
event-level privacy

ToPL [31] % %

Shuffling LDP [15] " %

THRESH [21] " %user-level privacy
CGM [3] " %

Local DP

w-event privacy LDP-IDS [29] " %

Item heterogeneous HDP [1] % %

PDP [20] % "

OSDP [23] % "

Geo-I [2] % "

PWSM, VPDM [32] % "

PUCE, PGT [10] % "

Record heterogenous

PFA, PFA+ [26] % "

Our mechanisms " "

3 PROBLEM SETTINGS
In this section, we first introduce key concepts, including data
streams. Next, we present the new definition of𝒘-event 𝝐 personal-
ized DP. Finally, we provide the problem definition: Personalized
𝑤-event Private Publishing for Infinite Data Streams (PWPP-IDS).
Table 2 outlines the notations used throughout this paper.

3.1 Data Stream
Definition 1. (Data Stream). Let 𝐷𝑡 ∈ D be a database with 𝑑

columns and 𝑛 rows (each row representing a user) at 𝑡-th time slot.
The infinite database sequence 𝑆 = [𝐷1, 𝐷2, . . .] is called a data
stream, where 𝑆 [𝑡] is the 𝑡-th element in 𝑆 (i.e., 𝑆 [𝑡] = 𝐷𝑡 ).

For any data stream 𝑆 , its substream between time slot 𝑡𝑙 and 𝑡𝑟
(where 𝑡𝑙 < 𝑡𝑟 ) is noted as 𝑆𝑡𝑙 ,𝑡𝑟 = [𝐷𝑡𝑙 , 𝐷𝑡𝑙+1, . . . , 𝐷𝑡𝑟 ]. For 𝑡𝑙 = 1,
we denote 𝑆𝑡 = [𝐷1, 𝐷2, . . . , 𝐷𝑡 ] and call it the stream prefix of 𝑆 .

Definition 2. (Data Stream Count Publishing). Let 𝑄 : D → R𝑑 be
a count query. Then, 𝑄 (𝑆 [𝑡]) = 𝑄 (𝐷𝑡 ) = 𝒄𝑡 is the count data to be
published at time slot 𝑡 , where 𝒄𝑡 ( 𝑗) represents the count of the 𝑗-th
column of 𝐷𝑡 . The infinite count data series [𝒄1, 𝒄2, . . .] is called a
data stream count publishing.

3.2 𝒘-event level 𝝐-Personalized DP
Definition 3. (𝑤-neighboring stream prefixes [7, 22]). Let 𝑤 be a
positive integer, two stream prefixes 𝑆𝑡 , 𝑆 ′𝑡 are 𝑤-neighboring (i.e.,
𝑆𝑡 ∼𝑤 𝑆 ′𝑡 ), if

(1) for each 𝑆𝑡 [𝑘], 𝑆 ′𝑡 [𝑘] such that 𝑘 ≤ 𝑡 and 𝑆𝑡 [𝑘] ≠ 𝑆 ′𝑡 [𝑘], it
holds that 𝑆𝑡 [𝑘] and 𝑆 ′𝑡 [𝑘] are neighboring [22] in central-
ized DP, and

(2) for each 𝑆𝑡 [𝑘1], 𝑆𝑡 [𝑘2], 𝑆 ′𝑡 [𝑘1], 𝑆 ′𝑡 [𝑘2] with 𝑘1 < 𝑘2, 𝑆𝑡 [𝑘1] ≠
𝑆 ′𝑡 [𝑘1] and 𝑆𝑡 [𝑘2] ≠ 𝑆 ′𝑡 [𝑘2], it holds that 𝑘2 − 𝑘1 + 1 ≤ 𝑤 .

Definition 4. (𝒘-event level 𝝐-Personalized DP, (𝒘, 𝝐)-EPDP). Let
M be a mechanism that takes a stream prefix of arbitrary size as
input. Let O be the set of all possible outputs of M. Given a universe
of users 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 | }, then M is (𝒘, 𝝐)-EPDP if ∀𝑂 ⊆ O,
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Table 2: Notations.
Notations Description

D the database domain
𝐷𝑡 a database at time slot 𝑡
𝑆 a data stream
𝑢𝑖 the 𝑖-th user
𝒙𝑖,𝑡 𝑢𝑖 ’s data at time slot 𝑡
𝒄𝑡 a real statistical histogram at time slot 𝑡
𝒓𝑖 an estimation statistic histogram at time slot 𝑡
𝑤𝑖 𝑢𝑖 ’s privacy window size
𝜖𝑖 𝑢𝑖 ’s privacy budget

∀𝑤𝑖 ∈ 𝒘 and ∀𝑆𝑡 , 𝑆′𝑡 satisfying 𝑆𝑡 ∼𝑤𝑖 𝑆
′
𝑡 ,

Pr[𝑀 (𝑆𝑡 ) ∈ 𝑂 ] ≤ 𝑒𝜖𝑖 Pr[𝑀 (𝑆′𝑡 ) ∈ 𝑂 ],

where 𝑢𝑖 ∈ 𝑈 requires 𝑤𝑖 -event level window size, and 𝜖𝑖 denotes
𝑢𝑖 ’s privacy budget requirement for the 𝑤𝑖 events.

We denote the pair (𝑤𝑖 , 𝜖𝑖 ) as 𝑢𝑖 ’s privacy requirement. Specif-
ically, when 𝑤 = 1, we call it 𝝐-Personalized Differential Privacy,
𝝐-PDP [20].

3.3 Definition of PWPP-IDS
Given a data stream 𝑆 , the server obtains the data stream count
publishing as 𝒄 = [𝒄1, 𝒄2, . . .]. To protect user privacy, however, the
server only receives the obfuscated data stream 𝑆 ′ and publishes the
estimation data stream count (i.e., estimation count) 𝒓 = [𝒓1, 𝒓2, . . .].
We present our problem definition as follows.

Definition 5. (PWPP-IDS). Given a user set 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛},
each 𝑢𝑖 holds a privacy requirement pair (𝑤𝑖 , 𝜖𝑖 ) and a series data
𝒙𝑖,𝑡 for 𝑡 ∈ N+. All the 𝒙𝑖,𝑡 for 𝑢𝑖 ∈ 𝑈 at time slot 𝑡 form 𝐷𝑡 . All
the 𝐷𝑡 form an infinite data stream 𝑆 = [𝐷1, 𝐷2, . . .]. PWPP-IDS
is to publish an obfuscated histogram 𝒓 = [𝒓1, 𝒓2, . . .] of 𝑆 at each
time slot 𝑡 achieving (𝒘, 𝝐)-EPDP with the error between 𝒓 and 𝒄
minimized, namely ∀𝑇 ∈ N+:

min
𝜖𝜃

∑︁
𝑡 ∈ [𝑇 ]

∥𝒓𝑡 − 𝒄𝑡 ∥2
2

𝑠.𝑡 .

𝑡∑︁
𝑘=min (𝑡−𝑤𝑖+1,1)

𝜖𝑖,𝑘 ≤ 𝜖𝑖 , ∀𝑢𝑖 ∈ 𝑈

where 𝜖𝑖,𝑘 indicates the privacy budget at time slot 𝑘 .

4 PERSONALIZED WINDOW SIZE
MECHANISM

In this section, we analyze the errors in reporting obfuscated data
stream counts and introduce Optimal Budget Selection (OBS) method
to minimize these errors. We then propose Personalized Window
Size Mechanism (PWSM) to address PWPP-IDS. The core idea of
PWSM is to select the optimal privacy budget 𝜖𝑜𝑝𝑡 (𝑡) at each time
slot 𝑡 and report obfuscated count results that satisfy 𝜖𝑜𝑝𝑡 (𝑡)-DP.

4.1 Reporting Errors
For each time slot, we use the Sampling Mechanism (SM) [20] to
satisfy all users’ privacy requirements (i.e., achieving 𝝐-PDP). SM
consists of two steps: sample (𝑆𝑀𝑠 ) and disturb (𝑆𝑀𝑑 ). In 𝑆𝑀𝑠 , the
server first sets a privacy budget threshold 𝜖𝜃 , then constructs a
sampling subset 𝐷𝑆 by appending items 𝑥𝑖 with 𝜖𝑖 ≥ 𝜖𝜃 to 𝐷𝑆 , while
sampling other items 𝑥 𝑗 with 𝜖 𝑗 < 𝜖𝜃 at a probability of 𝑝 𝑗 = 𝑒

𝜖𝑗 −1
𝑒𝜖𝜃 −1 .

In 𝑆𝑀𝑑 , the server employs a DP mechanism (e.g., the Laplace
Mechanism) to report an obfuscated result that achieves 𝜖𝜃 -DP.

SM introduces two types of errors: sampling error and noise error.
At each time slot 𝑡 , given a privacy budget threshold 𝜖𝜃 , the total data
reporting error is 𝑒𝑟𝑟 (𝜖𝜃 ) = 𝑒𝑟𝑟𝑠 (𝜖𝜃 ) + 𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ). Here, 𝑒𝑟𝑟𝑠 (𝜖𝜃 )
represents the sampling error from sampling users with privacy
budgets below 𝜖𝜃 , while 𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ) represents the noise error from
adding noise to achieve 𝜖𝜃 -DP. Next, we introduce these sampling
and noise errors in detail.

Definition 6. (Sampling Error [20]). Given a privacy budget thresh-
old 𝜖𝜃 and 𝑚 kinds of privacy budget requirements 𝜖1, 𝜖2, . . . , 𝜖𝑚
from 𝑛 users with 𝜖𝑖 < 𝜖 𝑗 for 𝑖 < 𝑗 and 𝑖, 𝑗 ∈ [𝑚] where 𝜖𝑖 is de-

clared by 𝑛𝑖 users (
𝑚∑
𝑖=1

𝑛𝑖 = 𝑛), the sampling error 𝑒𝑟𝑟𝑠 (𝜖𝜃 ) is defined

as
𝑒𝑟𝑟𝑠 (𝜖𝜃 ) = 𝑉𝑎𝑟 (𝑐𝑜𝑢𝑛𝑡 (𝒓𝑡 ) ) + 𝑏𝑖𝑎𝑠 (𝒓𝑡 )2

=
∑︁
𝜖𝑖<𝜖𝜃

𝑛𝑖𝑝𝑖 (1 − 𝑝𝑖 ) +
©­«

∑︁
𝜖𝑖<𝜖𝜃

𝑛𝑖 (1 − 𝑝𝑖 )
ª®¬

2

,
(1)

where 𝑝𝑖 = 𝑒𝜖𝑖 −1
𝑒𝜖𝜃 −1 .

Definition 7. (Noise Error). The noise error 𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ) is defined as
the error of the Laplace mechanism, namely,

𝑒𝑟𝑟𝑑𝑝 (𝜖𝜃 ) =
2
𝜖2
𝜃

. (2)

Various metrics exist to measure the errors of Laplace mecha-
nisms for noise error, including variance [20, 29], scale [14, 22], and
(𝛼, 𝛽)-usefulness [5, 14]. In this work, we employ variance as our
metric [20].

Based on Equations (1) and (2), we can observe that 𝑒𝑟𝑟𝑠 depends
on 𝑛𝑖 , 𝜖𝑖 and 𝜖𝜃 , and is independent of 𝒓𝑡 . Similarly, 𝑒𝑟𝑟𝑑𝑝 depends
on 𝜖𝜃 , and is independent of 𝒓𝑡 .

4.2 Optimal Budget Selection
Given the privacy budget requirements (𝜖1,𝑡 , 𝜖2,𝑡 , . . . , 𝜖𝑛,𝑡 ) of 𝑛 users,
we can determine the frequency of each privacy budget requirement
and select the optimal 𝜖𝜃 that minimizes the data reporting error 𝑒𝑟𝑟 .
This process is detailed in Algorithm 1.

Taking 𝑛 privacy budgets as input, the Optimal Budget Selection
(OBS) algorithm counts the different privacy budgets. Assume there
are 𝑛̃ distinct privacy budgets, with 𝑛𝑘 users requiring 𝜖𝑘 for 𝑘 ∈ [𝑛̃].
Let 𝜖 be the set of different privacy budget and 𝑁 be their correspond-
ing frequencies (Lines 1-2). Then, OBS finds the minimum reporting
error 𝑒𝑟𝑟𝑚𝑖𝑛 (lines 4-8). Specifically, it iterates over all 𝜖𝑘 ∈ 𝝐̃ and
selects the value 𝜖𝑘 with the smallest 𝑒𝑟𝑟 = 𝑒𝑟𝑟𝑠 (𝜖𝑘 ) + 𝑒𝑟𝑟𝑑𝑝 (𝜖𝑘 ) as
the optimal privacy budget 𝜖𝑜𝑝𝑡 with the minimal error 𝑒𝑟𝑟𝑚𝑖𝑛 .

Example 2 (Running Example of the OBS Algorithm). Sup-
pose we have 10 privacy budgets as input: 𝝐 = (0.1, 0.4, 0.4, 0.1,
0.4, 0.4, 0.8, 0.8, 0.8, 0.4). OBS first determines 𝝐̃ = (0.1, 0.4, 0.8),
𝑛̃ = |𝝐̃ | = 3, and 𝑁 = (2, 5, 3). Based on these statistics, OBS iter-
ates through the 3 privacy budgets in 𝝐̃ and calculates their relative
errors: 𝑒𝑟𝑟1 = 0 + 2

0.12 = 200, 𝑒𝑟𝑟2 = 2 × 𝑒0.1−1
𝑒0.4−1 × (1 − 𝑒0.1−1

𝑒0.4−1 ) + (2 ×
(1 − 𝑒0.1−1

𝑒0.4−1 ) )
2 + 2

0.42 = 15.31 and 𝑒𝑟𝑟3 = 2 × 𝑒0.1−1
𝑒0.8−1 × (1 − 𝑒0.1−1

𝑒0.8−1 ) + 5 ×
𝑒0.4−1
𝑒0.8−1 × (1− 𝑒0.4−1

𝑒0.8−1 ) + (2× (1− 𝑒0.1−1
𝑒0.4−1 ) + 5× (1− 𝑒0.4−1

𝑒0.8−1 ) )
2 + 2

0.82 = 27.73.
Finally, OBS returns 0.4 with the minimal error 15.31.
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Algorithm 1: Optimal Budget Selection (OBS)
Input: personalized privacy budget set 𝝐 = (𝜖1, 𝜖2, . . . , 𝜖𝑛 )
Output: 𝜖𝑜𝑝𝑡 , 𝑒𝑟𝑟𝑚𝑖𝑛

1 Set 𝝐̃ = (𝜖1, 𝜖2, . . . , 𝜖𝑛̃ ) as the set of different 𝜖 ∈ 𝝐 ;
2 Set 𝑁 = (𝑛1, 𝑛2, . . . , 𝑛𝑛̃ ) as the corresponding frequency of 𝜖𝑘 ∈ 𝝐̃ ;
3 Initialize 𝑒𝑟𝑟𝑚𝑖𝑛 as the upper bound of error value;
4 for 𝜖𝑘 ∈ 𝝐̃ do
5 𝑒𝑟𝑟 = 𝑒𝑟𝑟𝑠 (𝜖𝑘 ) + 𝑒𝑟𝑟𝑑𝑝 (𝜖𝑘 );
6 if 𝑒𝑟𝑟 < 𝑒𝑟𝑟𝑚𝑖𝑛 then
7 𝑒𝑟𝑟𝑚𝑖𝑛 = 𝑒𝑟𝑟 ;
8 𝜖𝑜𝑝𝑡 as 𝜖𝑘 ;

9 return 𝜖𝑜𝑝𝑡 , 𝑒𝑟𝑟𝑚𝑖𝑛

4.3 Personalized Window Size Mechanism
Budget division [22, 29] is a traditional framework for publishing
private stream data under 𝑤-event privacy. It comprises two basic
methods, namely Uniform and Sampling and two adaptive methods,
namely Budget Distribution (BD) and Budget Absorption (BA). The
adaptive methods leverage the stream’s variation tendency, resulting
in more accurate obfuscated estimations.

In this subsection, we extend the adaptive budget division frame-
work to a personalized context and introduce our Personalized Win-
dow Size Mechanism (PWSM). Based on PWSM, we propose two
methods: namely Personalized Budget Distribution (PBD) and Per-
onalized Budget Absorption (PBA).

In real applications, users must specify their privacy budgets
and window sizes. System administrators first define a discretized
privacy budget range (e.g., {0.1, 0.5, 0.9}) and a window size range
(e.g., {40, 80, 120}). Then, they can map ascending privacy budget
values to descending privacy budget levels (e.g., High, Medium,
Low) and ascending window size values to ascending window size
levels (e.g., Small, Medium, Large). Users can then select both a
privacy budget level and a window size level based on their needs
and past experience. After users submit these selections, the server
converts them into the corresponding values.

As shown in Algorithm 2, the PWSM algorithm takes three inputs:
the historical estimation 𝐻𝑖𝑠, personalized privacy budget 𝝐 , and
personalized window size set 𝒘. Both 𝝐 and 𝒘 are fixed values
collected from all users during system initialization. PWSM first
calculates all users’ privacy budget resources 𝝐𝑡 at the current time
slot 𝑡 to satisfy (𝒘, 𝝐)-EPDP (line 1). It then divides 𝝐𝑡 into two
parts: 𝝐 (1)𝑡 and 𝝐 (2)𝑡 (line 2). Using 𝝐 (1)𝑡 , PWSM calculates the
dissimilarity𝑑𝑖𝑠 between the current count value and the last reported
one by invoking the SM method [20] (line 3). Next, it sets the
change threshold as the reporting error 𝑒𝑟𝑟 calculated with 𝝐 (2)𝑡

(line 4). Finally, PWSM adaptively decides whether to publish a
new obfuscated estimation or skip (i.e., use the last published one to
approximate) by comparing 𝑑𝑖𝑠 to

√
𝑒𝑟𝑟 (lines 5-9).

To determine whether to publish a new obfuscated estimation or
skip, we need to introduce a judgment measure called the personal-
ized private dissimilarity measure.

Personalized Private Dissimilarity Measure. The personalized
dissimilarity measure 𝑑𝑖𝑠∗ is defined as the absolute error between
the true statistic 𝒄̃𝑡 under 𝑆𝑀𝑠 (i.e., the sample step of SM) at current

Algorithm 2: PWSM
Input: historical estimation 𝐻𝑖𝑠, EPDP privacy requirement (𝒘, 𝝐)
Output: 𝒓

1 Get the current privacy budgets 𝝐𝑡 of all users as 𝝐 and 𝒘;

2 Divide 𝝐𝑡 into two parts 𝝐 (1)
𝑡 and 𝝐 (2)

𝑡 satisfying 𝝐𝑡 = 𝝐 (1)
𝑡 + 𝝐 (2)

𝑡 ;
3 Calculate dissimilarity 𝑑𝑖𝑠 between current estimation and the last

estimation by 𝑆𝑀 (𝝐 (1)
𝑡 );

4 Calculate the reporting error 𝑒𝑟𝑟 of current estimation by 𝑂𝐵𝑆 (𝝐 (2)
𝑡 );

5 if 𝑑𝑖𝑠 >
√
𝑒𝑟𝑟 then

6 Calculate current estimation 𝒓 by 𝑆𝑀 (𝝐 (2)
𝑡 );

7 else
8 Set current estimation 𝒓 as the last reporting value;

9 return 𝒓 ;

Figure 2: A non-null publishing example.

Figure 3: A nullified time slot example.

time slot 𝑡 and the last publishing 𝒓𝑙 , namely,

𝑑𝑖𝑠∗ =
1
𝑑

𝑑∑︁
𝑘=1

| 𝒄̃𝑡 [𝑘 ] − 𝒓𝑙 [𝑘 ] | . (3)

Our goal is to privately obtain the personalized dissimilarity 𝑑𝑖𝑠∗
using the optimal privacy budget 𝜖𝑜𝑝𝑡 calculated through 𝑂𝐵𝑆 al-
gorithm. The personalized private dissimilarity measure 𝑑𝑖𝑠 is then
defined as:

𝑑𝑖𝑠 = 𝑑𝑖𝑠∗ + 𝐿𝑎𝑝

(
1

𝑑 · 𝜖𝑜𝑝𝑡

)
, (4)

where 𝐿𝑎𝑝 represents the Laplace mechanism.
Next, we introduce two methods for PWSM: Personalized Budget

Distribution (PBD) and Peronalized Budget Absorption (PBA).

4.4 Personalized Budget Distribution and
Peronalized Budget Absorption

Based on the framework PWSM in Algorithm 2, the reporting value
is either a newly disturbed statistic value or an approximation from
the previous reporting value. We now introduce the following nota-
tions to clarify this process.

Basic notations. For a sequence of publications (𝑟1, 𝑟2, ..., 𝑟𝑡 ) of
length 𝑡 , we define a “null publishing” as an approximation value and
“non-null publishing” as a new value. For any time slot 2 ≤ 𝜏 ≤ 𝑡 ,
we refer to 𝑟𝜏−1 as the last reporting value (or last publishing) of
time slot 𝜏 . In the sequence (𝑟1, 𝑟2, ..., 𝑟𝜏 ), we define the most recent
non-null publishing 𝑟𝑙 where 𝑙 < 𝜏 as the last non-null publishing.
For example in Figure 2, the publications at time slots 𝜏, 𝜏+1, 𝜏+4 are
non-null publishing, while those at 𝜏 +2 and 𝜏 +3 are null publishing.
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Algorithm 3: Dissimilarity Calculation (DC)
Input: 𝐷𝑡 , current personalized privacy budget list 𝝐𝑡 , historical data

publication (𝒓1, 𝒓2, . . . , 𝒓𝑡−1 )
Output: 𝒓𝑡

1 𝜖𝑜𝑝𝑡= OBS(𝝐𝑡 ) ;
2 𝐷̃𝑡 = 𝑆𝑀𝑠 (𝐷𝑡 , 𝝐𝑡 , 𝜖𝑜𝑝𝑡 );
3 𝒄̃𝑡 = 𝑄 (𝐷̃𝑡 );
4 Get the last non-null publishing 𝒓𝑙 from (𝒓1, 𝒓2, . . . , 𝒓𝑡−1 );
5 return 𝑑𝑖𝑠 = 1

𝑑

∑𝑑
𝑗=1 | 𝒄̃𝑡 [ 𝑗 ] − 𝒓𝑙 [ 𝑗 ] | + 𝐿𝑎𝑝 (1/(𝑑 · 𝜖𝑜𝑝𝑡 ) );

Algorithm 4: Personalized Budget Distribution
Input: 𝐷𝑡 , EPDP privacy requirement (𝒘, 𝝐), historical data

publication (𝒓1, 𝒓2, . . . , 𝒓𝑡−1 )
Output: 𝒓𝑡

1 Get the current window average budget 𝜖𝑖 = 𝜖𝑖/𝑤𝑖 for each 𝑖 ∈ [𝑛];
2 𝝐 (1)

𝑡 = (𝜖1/2, 𝜖2/2, . . . , 𝜖𝑛/2);
3 Get dissimilarity 𝑑𝑖𝑠 by DC(𝐷𝑡 , 𝝐

(1)
𝑡 , 𝑟1, ..., 𝑟𝑡−1) in Algorithm 3;

4 𝜖𝑟𝑚,𝑖 = 𝜖𝑖/2 − ∑𝑡−1
𝑘=𝑡−𝑤𝑖+1 𝜖

(2)
𝑖,𝑘

;

5 𝝐 (2)
𝑡 = (𝜖𝑟𝑚,1/2, 𝜖𝑟𝑚,2/2, . . . , 𝜖𝑟𝑚,𝑛/2);

6 𝜖
(2)
𝑜𝑝𝑡 , 𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 = OBS(𝝐 (2)

𝑡 );

7 if 𝑑𝑖𝑠 >

√︃
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 then

8 𝐷̃
(2)
𝑡 = 𝑆𝑀𝑠 (𝐷𝑡 , 𝝐 (2)

𝑡 , 𝜖
(2)
𝑜𝑝𝑡 );

9 𝒄̃ (2)𝑡 = 𝑄 (𝐷̃ (2)
𝑡 );

10 return 𝒓𝑡 = 𝑆𝑀𝑑 (𝒄̃ (2)𝑡 , 𝜖
(2)
𝑜𝑝𝑡 );

11 else
12 return 𝒓𝑡 = 𝒓𝑡−1;

Given a privacy budget 𝜖 with a window size 𝑤 , we can calculate
the average privacy budget per time slot as 𝜖 = 𝜖/𝑤 . This 𝜖, which
we calla budget share, represents the smallest indivisible unit of
the privacy budget. Our goal is to maintain the total privacy budget
within any𝑤 window size below 𝜖 while keeping it sufficiently large.
When publishing new obfuscated data costs 𝑥 budget shares (𝑥 > 1),
the following 𝑥−1 time slots will use approximated values from their
last reporting values. We refer to these 𝑥 − 1 time slots as nullified
time slots. For example, in Figure 3, with a privacy budget 𝜖 of 4
and a window size of 4, the budget share 𝜖 equals 𝜖/𝑤 = 1. When
time slot 𝜏 + 1 uses 3 shares, the time slots 𝜏 + 2 and 𝜏 + 3 become
nullified time slots.
Personalized Budget Distribution (PBD). As shown in Algorithm 4,
PBD inputs the current user data 𝐷𝑖 , historical data publication, and
all users’ privacy budget and window size requirements. The privacy
budget 𝜖𝑖 of each user 𝑢𝑖 is divided into two parts: 1) calculate the
dissimilarity between the current data distribution and the last pub-
lished obfuscated data distribution (denoted as Part𝐷𝐶 ) (Lines 2-3);
2) calculate the new obfuscated publication at the current time slot
(denoted as Part𝑁𝑂𝑃 ) (Lines 4-6 and Lines 8-10).

In Part𝐷𝐶 , we allocate half of the average privacy budget per
time slot for dissimilarity calculation (i.e., 𝜖𝑖

2𝑤𝑖 for 𝑢𝑖 ). The process
then calls the Dissimilarity Calculation (Algorithm 3) to determine
the dissimilarity. Within Algorithm 3, the OBS algorithm selects
the optimal budget threshold 𝜖𝑜𝑝𝑡 . Finally, it uses the SM [20] to
compute the dissimilarity 𝑑𝑖𝑠 (lines 2-5).

Figure 4: An Information example for PBD.

In Part𝑁𝑂𝑃 , we first calculate the remaining privacy budget 𝜖𝑟𝑚,𝑖

for each 𝑢𝑖 . We then set the publication privacy budget for each
𝑢𝑖 to half of 𝜖𝑟𝑚,𝑖 . Similar to dissimilarity calculation, we use the
OBS algorithm to determine the optimal privacy budget 𝜖 (2)𝑜𝑝𝑡 and

its corresponding error 𝑒𝑟𝑟 (2)𝑜𝑝𝑡 . At this point, we have obtained two
measurements: the dissimilarity 𝑑𝑖𝑠 and the square root of error√︃
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 . We compare these two measurements to determine whether

to publish a new obfuscated statistic result or approximate the current

result with the last publication. If the 𝑑𝑖𝑠 is greater than
√︃
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 , it

indicates that the difference between the current data and the last
published data exceeds the error of noise, then we republish a new
obfuscated statistic result. Otherwise, we take the last published
result instead.

We illustrate the process of Personalized Budget Distribution with
an example as follows:

Example 3. Suppose there are 𝑛 users distributed across 5 lo-
cations, forming a complete graph. Figure 4 illustrates the privacy
budget requirements, window size requirements and locations for
the first three users across time slots 1 to 5. Figure 5 demonstrates
the estimation process of PBD. The total privacy budget for each
user 𝑢𝑖 is evenly split into two parts, each containing 𝜖𝑖/2. The
first part is allocated for dissimilarity calculation, while the sec-
ond is for publication noise calculation. For instance, 𝜖1 is divided
into 𝝐 (1)1 (𝑢1) = 𝜖1/2 and 𝝐 (2)1 (𝑢1) = 𝜖1/2. We compute the privacy

budget usage 𝜖 (1)
𝑖,𝑡

for dissimilarity and 𝜖
(2)
𝑖,𝑡

for noise statistic publi-
cation for each user at each time slot. These values are recorded in
an 𝑛×2 matrix at each time slot in Figure 5. Using 𝑢1 as an example,
𝜖
(1)
1,𝑡 = 𝝐 (1)1 (𝑢1)/𝑤1 = 𝜖1/8. At time slot 1, 𝜖 (2)1,1 = 𝝐 (2)1 (𝑢1)/2 = 𝜖1/4.

The algorithm calculates the dissimilarity 𝑑𝑖𝑠 at time slot 1 using

all 𝜖 (1)
𝑖,1 , and the error 𝑒𝑟𝑟 (2)𝑜𝑝𝑡 using all 𝜖 (2)1,𝑡 . Assume 𝑑𝑖𝑠 >

√︃
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 ,

then a new obfuscated statistic 𝒓1 is published at time slot 1. At time

slot 2, assume 𝑑𝑖𝑠 ≤
√︃
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 , then 𝜖

(2)
𝑖,2 is not used to publish a new

obfuscated statistic result, and its usage is set to zeros for all users.
At time slot 3, 𝜖 (2)1,3 = (𝜖1/2 − 𝜖

(2)
1,1 )/2 = 𝜖1/8. The vector below each

matrix in Figure 5 represents the total privacy budget used at the
current time slot for each user. For example, at time slot 1, the total
privacy budget usage for 𝑢1 is 𝜖 (1)1,1 + 𝜖

(2)
1,1 = 3𝜖1/8.

Peronalized Budget Absorption (PBA). Algorithm 5 outlines the
process of PBA. The dissimilarity calculation (Part𝐷𝐶 ) in PBA is
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Figure 5: A process example for PBD.

identical to that of PBD. However, PBA and PBD differ significantly
in their strategies on allocating the publication privacy budget.

For Part𝑁𝑂𝑃 in PBA, we assume an average privacy budget of
𝜖𝑖

2𝑤𝑖 (one share) for each 𝑢𝑖 at each time slot 𝑡 . A publication at time
slot 𝑡 can use more than one share by borrowing from its successor
time slots. The variable 𝑡𝑖,𝑁 in Line 4 represents the number of
successor time slots occupied by the last publication. We calculate
the maximal 𝑡𝑁 of all 𝑡𝑖,𝑁 and determine whether the current time
has been occupied (𝑡 −𝑙 ≤ 𝑡𝑁 ). If so, we approximate the publication
using the last published result. Otherwise, we calculate the remaining
budget shares from the precursor time slots (i.e., 𝑡𝐴,𝑖 in Line 9)
and set the current publication budget as the total absorbed shares
(Line 10). The subsequent steps follow the same process as outlined
in Algorithm 4.

Example 4. We continue use the demonstration case shown in
Figure 4. Figure 6 illustrates the estimation process of PBA. The
dissimilarity calculation process in PBA is identical to that in Exam-
ple 3. For Part𝑁𝑂𝑃 , at time slot 1, with no budget to absorb, all users
utilize one share (i.e., 𝜖𝑖/(2𝑤𝑖 )) to publish a new obfuscated statistic

result. Assume time slot 2 is skipped (i.e., 𝑑𝑖𝑠 ≤
√︃
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 ). At time

slot 3, 𝑡1,𝑁 = 1, 𝑡2,𝑁 = 0, and 𝑡3,𝑁 = 1.5. Assuming the nullified
bound 𝑡𝑁 is 1.8. Since 𝑡 − 𝑙 = 3 − 1 = 2 > 𝑡𝑁 , a new obfuscated
statistic result is reported. The publication budget set is calculated
as 𝝐 (2)3 = (𝜖1/4, 𝜖2/2, 𝜖3/3, . . .). At time slot 4, 𝑡1,𝑁 = 1, 𝑡2,𝑁 = 1 and
𝑡3,𝑁 = 1 (Actually, all 𝑡𝑖,𝑁 = 1). As 𝑡−𝑙 = 4−3 = 1 ≤ 𝑡𝑁 , no output is
produced. At time slot 5, all 𝑡𝑖,𝑁 remain 1, and 𝑡 −𝑙 = 5−3 = 2 > 𝑡𝑁 .
The absorbed time slots 𝑡𝐴,𝑖 all equal 1. The resulting publication
budget set is 𝝐 (2)5 = (𝜖1/8, 𝜖2/4, 𝜖3/6, . . .).

4.5 Analyses
W1e analyze the time cost and privacy aspects of our PBD and PBA.
Time Cost Analysis. Let 𝑚 be the number of distinct privacy re-
quirements (𝑤𝑖 , 𝜖𝑖 ), where 𝑚 ≤ 𝑛. The time complexity of OBS is
𝑂 (𝑚) for both PBD and PBA. The Sample Mechanism and Query
operations each have a time complexity of 𝑂 (𝑛). Thus, the time
complexities of PBD and PBA both are 𝑂 (𝑛).

Algorithm 5: Personalized Budget Absorption
Input: 𝐷𝑡 , EPDP privacy requirement (𝒘, 𝝐), historical data

publication (𝒓1, 𝒓2, . . . , 𝒓𝑡−1 )
Output: 𝒓𝑡

1 Get the current window average budget 𝜖𝑖 = 𝜖𝑖/𝑤𝑖 for each 𝑖 ∈ [𝑛];
2 𝝐 (1)

𝑡 = (𝜖1/2, 𝜖2/2, . . . , 𝜖𝑛/2);
3 Get dissimilarity 𝑑𝑖𝑠 by DC(𝐷𝑡 , 𝝐

(1)
𝑡 , 𝑟1, ..., 𝑟𝑡−1) in Algorithm 3;

4 Set nullified time slots 𝑡𝑖,𝑁 =
𝜖
(2)
𝑖,𝑙

𝜖𝑖 /(2𝑤𝑖 ) − 1 for 𝑖 ∈ [𝑛] where 𝑙 is the
last non-null publishing time slot;

5 Set nullified time slot bound 𝑡𝑁 = max𝑖∈ [𝑛] 𝑡𝑖,𝑁 ;
6 if 𝑡 − 𝑙 ≤ 𝑡𝑁 then
7 return 𝒓𝑡 = 𝒓𝑡−1;

8 else
9 Set absorbed time slots 𝑡𝐴,𝑖 = max (𝑡 − 𝑙 − 𝑡𝑖,𝑁 , 0) for 𝑖 ∈ [𝑛];

10 Set publication budget 𝜖 (2)
𝑖,𝑡

=
𝜖𝑖

2𝑤𝑖 · min (𝑡𝐴,𝑖 , 𝑤𝑖 ) for 𝑖 ∈ [𝑛];

11 𝝐 (2)
𝑡 =

(
𝜖
(2)
1,𝑡 , 𝜖

(2)
2,𝑡 , . . . , 𝜖

(2)
𝑛,𝑡

)
;

12 Get remaining budget 𝜖𝑟𝑚,𝑖 = 𝜖𝑖/2 − ∑𝑡−1
𝑘=𝑡−𝑤𝑖+1 𝜖

(2)
𝑖,𝑘

;

13 𝝐 (2)
𝑡 = (𝜖𝑟𝑚,1/2, 𝜖𝑟𝑚,2/2, . . . , 𝜖𝑟𝑚,𝑛/2);

14 𝜖
(2)
𝑜𝑝𝑡 , 𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 = OBS(𝝐 (2)

𝑡 );

15 if 𝑑𝑖𝑠 >

√︃
𝑒𝑟𝑟

(2)
𝑜𝑝𝑡 then

16 𝐷̃
(2)
𝑡 = 𝑆𝑀𝑠 (𝐷𝑡 , 𝝐 (2)

𝑡 , 𝜖
(2)
𝑜𝑝𝑡 );

17 𝒄̃ (2)𝑡 = 𝑄 (𝐷̃ (2)
𝑡 );

18 return 𝒓𝑡 = 𝑆𝑀𝑑 (𝒄̃ (2)𝑡 , 𝜖
(2)
𝑜𝑝𝑡 );

19 else
20 return 𝒓𝑡 = 𝒓𝑡−1;

Figure 6: A process example for PBA.

Privacy Analysis. The privacy analysis for PBD and PBA:

Theorem 4.1. PBD and PBA satisfy (𝒘, 𝝐)-EPDP.

PROOF. (1) PBD satisfies (𝒘, 𝝐)-EPDP.
In the process of Part𝐷𝐶 , for each user 𝑢𝑖 , the dissimilarity budget

at each time slot is 𝜖𝑖/(2𝑤𝑖 ). Then for each time slot 𝑡 , we have
𝑡∑︁

𝑘=max(𝑡−𝑤𝑖+1,1)
𝜖
(1)
𝑖,𝑘

= 𝜖𝑖 /2. (5)

7



In Part𝑁𝑂𝑃 , for each user 𝑢𝑖 at time slot 𝑡 , only half of the pub-
lication budget is used when publication occurs: 𝜖 (2)

𝑖,𝑡
= (𝜖𝑖/2 −∑𝑡−1

𝑘=max(𝑡−𝑤𝑖+1,1) 𝜖
(2)
𝑖,𝑘

)/2. For any time slot 𝑡 ∈ [1,𝑤𝑖 ], the summa-
tion publication budgets used for 𝑢𝑖 is at most

∑𝑤𝑖
𝑘=1 𝜖𝑖/(2 · 2𝑘 ) ≤

(𝜖𝑖/2) · (1 − 1
2𝑤𝑖 ) ≤ 𝜖𝑖/2. Suppose

𝑡∑
𝑘=max(𝑡−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖/2 for

𝑡 = 𝑤𝑖 + 𝑠 (i.e.,
𝑤𝑖+𝑠∑

𝑘=max(𝑠+1,1)
𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖/2). Then for 𝑡 = 𝑤𝑖 + 𝑠 + 1, we

have:
𝑤𝑖+𝑠+1∑︁

𝑘=max(𝑠+2,1)
𝜖
(2)
𝑖,𝑘

=

𝑤𝑖+𝑠∑︁
𝑘=max(𝑠+2,1)

𝜖
(2)
𝑖,𝑘

+ 𝜖
(2)
𝑖,𝑤𝑖+𝑠+1 . (6)

Since 𝜖 (2)
𝑖,𝑤𝑖+𝑠+1 is at most half of the remaining publication budget

at time slot 𝑤𝑖 + 𝑠:

𝜖
(2)
𝑖,𝑤𝑖+𝑠+1 ≤ (𝜖𝑖 /2 −

𝑤𝑖+𝑠∑︁
𝑘=max(𝑠+2,1)

𝜖
(2)
𝑖,𝑘

)/2. (7)

According to Equations (6) and (7), we have:
𝑤𝑖+𝑠+1∑︁

𝑘=max(𝑠+2,1)
𝜖
(2)
𝑖,𝑘

≤
𝑤𝑖+𝑠∑︁
𝑘=max(
𝑠+2,1)

𝜖
(2)
𝑖,𝑘

+ (𝜖𝑖 /2 −
𝑤𝑖+𝑠∑︁
𝑘=max(
𝑠+2,1)

𝜖
(2)
𝑖,𝑘

)/2

= 𝜖𝑖 /4 + (
𝑤𝑖+𝑠∑︁

𝑘=max(𝑠+2,1)
𝜖
(2)
𝑖,𝑘

)/2

≤ 𝜖𝑖 /4 + 𝜖𝑖 /4

= 𝜖𝑖 /2.

(8)

Therefore, for any 𝑡 ≥ 1, we have:
𝑡∑︁

𝑘=max (𝑡−𝑤𝑖+1,1)
𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖 /2. (9)

According to the Composition Theorems [14], we have:
𝑡∑︁

𝑘=max(𝑡−𝑤𝑖+1,1)
𝜖𝑖,𝑘 =

𝑡∑︁
𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(1)
𝑖,𝑘

+
𝑡∑︁

𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖 .

(10)

For any user 𝑢𝑖 and any two 𝑤𝑖 -neighboring stream prefixes 𝑆𝑡
and 𝑆 ′𝑡 (i.e., 𝑆𝑡 ∼𝑤𝑖 𝑆

′
𝑡 ), let 𝑡𝑠 be the earliest time slot where 𝑆𝑡 [𝑡𝑠 ] ≠

𝑆 ′𝑡 [𝑡𝑠 ] and 𝑡𝑒 be the latest time slot where 𝑆𝑡 [𝑡𝑒 ] ≠ 𝑆 ′𝑡 [𝑡𝑒 ]. Then
we have 𝑡𝑒 − 𝑡𝑠 + 1 ≤ 𝑤𝑖 . Denoting the output of our PBD as
𝑃𝐵𝐷 (𝑆𝑡 [𝑡]) = 𝑜𝑡 ∈ O, for any 𝑂 ⊆ O, we have:

Pr[𝑃𝐵𝐷 (𝑆𝑡 ) ] ∈ 𝑂

Pr[𝑃𝐵𝐷 (𝑆′𝑡 ) ] ∈ 𝑂
≤ Π𝑡𝑒

𝑘=𝑡𝑠

Pr[𝑃𝐵𝐷 (𝑆𝑡 [𝑘 ] ) = 𝑜𝑘 ]
Pr[𝑃𝐵𝐷 (𝑆′𝑡 [𝑘 ] ) = 𝑜𝑘 ]

≤ 𝑒

∑𝑡𝑒
𝑘=𝑡𝑠

𝜖𝑖,𝑘

≤ 𝑒

∑𝑡𝑒
𝑘=max (𝑡𝑒 −𝑤𝑖+1,1) 𝜖𝑖,𝑘 ≤ 𝑒𝜖𝑖 .

(11)

Therefore, PBD satisfies (𝒘, 𝝐)-EPDP where𝒘 = (𝑤1,𝑤2, . . . ,𝑤𝑛)
and 𝝐 = ((𝑢1, 𝜖1), (𝑢2, 𝜖2), . . . , (𝑢𝑛, 𝜖𝑛)).

(2) PBA satisfies (𝒘, 𝝐)-EPDP.
The Part𝐷𝐶 in PBA is identical to that that in PBD. Consequently,

for each time slot 𝑡 , we have:
𝑡∑︁

𝑘=max(𝑡−𝑤𝑖+1,1)
𝜖
(1)
𝑖,𝑘

= 𝜖𝑖 /2. (12)

In Part𝑁𝑂𝑃 , for any user 𝑢𝑖 and any window of size 𝑤𝑖 , there are
𝑠𝑖 publication time slots in the window. We denote these publication
time slots as (𝑘1, 𝑘2, . . . , 𝑘𝑠𝑖 ). For any publication time slot 𝑘 𝑗 ( 𝑗 ∈
[𝑠𝑖 ]), the quantity of its absorbing unused budgets is denoted as 𝛼𝑖,𝑘 𝑗 .
Figure 7 illustrates an example where 𝑠𝑖 = 3 and 𝑤𝑖 = 9.

Figure 7: An example for parameters in PBA.

Based on Algorithm 5, we have:

𝑤𝑖 ≥
𝑠𝑖∑︁
𝑗=1

(1 + 2𝛼𝑖,𝑘𝑗 ) − 𝛼𝑖,𝑘1 − 𝛼𝑖,𝑘𝑠𝑖
. (13)

Then, for the total publication budgets used in any window, we have
𝑡∑︁

𝑘=max (𝑡−𝑤𝑖+1,1)
𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖

2𝑤𝑖
·
𝑠𝑖∑︁
𝑗=1

(1 + 𝛼𝑖,𝑘𝑗
)

≤
𝜖𝑖 ·

∑𝑠𝑖
𝑗=1 (1 + 𝛼𝑖,𝑘𝑗

)

2
∑𝑠𝑖
𝑗=1 (1 + 2𝛼𝑖,𝑘𝑗 ) − 2𝛼𝑖,𝑘1 − 2𝛼𝑖,𝑘𝑠𝑖

=
𝜖𝑖 ·

∑𝑠𝑖
𝑗=1 (1 + 𝛼𝑖,𝑘𝑗

)

2
∑𝑠𝑖
𝑗=1 (1 + 𝛼𝑖,𝑘𝑗

) + 2
∑𝑠𝑖 −1
𝑗=2 𝛼𝑖,𝑘𝑗

≤ 𝜖𝑖 /2.

(14)

Based on Equations (12) and (14), and applying the Composition
Theorems [14], we obtain:

𝑡∑︁
𝑘=max (𝑡−𝑤𝑖+1,1)

𝜖𝑖,𝑘 =

𝑡∑︁
𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(1)
𝑖,𝑘

+
𝑡∑︁

𝑘=max(𝑡
−𝑤𝑖+1,1)

𝜖
(2)
𝑖,𝑘

≤ 𝜖𝑖 .

(15)

The subsequent proof process follows the same steps as in PBD.
Ultimately, we demonstrate that PBA also satisfies (𝒘, 𝝐)-EPDP. □

Utility Analysis. For each user 𝑢𝑖 in PBD and PBA, we define
𝑤𝐿 as the smallest window size among all users. For each 𝑢𝑖 , given
(𝑤𝑖 , 𝜖𝑖 ), let 𝜖𝐿 = min𝑖∈[𝑛]

𝜖𝑖
𝑤𝑖

and 𝜖𝑅 = max𝑖∈[𝑛]
𝜖𝑖
𝑤𝑖

be the mini-
mum and maximum values of 𝜖𝑖

𝑤𝑖
, respectively. Let 𝑛𝐴 be the number

of times 𝜖𝑅 appears among all users. We assume that at most 𝑠 ≤ 𝑤𝐿

publications occur at time slots 𝑞1, 𝑞2,. . . , 𝑞𝑠 in the window of
size 𝑤𝐿 . We also assume there is no budget absorption from past
time slots outside the window. Furthermore, for each user, each
publication approximates the same number of skipped or nullified
publications.

We first present a crucial lemma.

Lemma 4.1. Given 𝑚 distinct privacy budget-quantity pairs 𝑃 =
{(𝜖 𝑗 , 𝑛 𝑗 ) | 𝑗 ∈ [𝑚],∑𝑗∈[𝑚] 𝑛 𝑗 = 𝑛} where pair (𝜖 𝑗 , 𝑛 𝑗 ) indicates that
𝜖 𝑗 appears 𝑛 𝑗 times in the user privacy requirement, and a query
with sensitivity 𝐼 , the error upper bound 𝑒𝑟𝑟𝑂 (𝑃) of the SM process
with privacy budget chosen from OBS is:

min

(
2𝐼2

min𝑗 𝜖2
𝑗

, (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1
4
) + 2𝐼2

max𝑗 𝜖2
𝑗

)
,

where 𝑛𝑀 = 𝑛𝑘 with 𝑘 = arg max𝑗∈[𝑚] 𝜖 𝑗 .

PROOF. Let𝑀𝐿 be the SM with privacy budget chosen as min𝑗 𝜖 𝑗 .
According to the SM process, all budget types will be selected. In
this case, the sampling error 𝑒𝑟𝑟𝑠 is 0 and the noise error 𝑒𝑟𝑟𝑑𝑝
is 2 · ( 𝐼

min𝑗 𝜖 𝑗 )
2 = 2𝐼 2

min𝑗 𝜖2
𝑗

. Thus, the total error of 𝑀𝐿 is 𝑒𝑟𝑟𝑀𝐿 =

2𝐼 2

min𝑗 𝜖2
𝑗

. Let 𝑀𝑅 be the SM with privacy budget chosen as max𝑗 𝜖 𝑗 . In
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this case, (𝑚−1) types of privacy budget are chosen with probability
𝑝𝑘 = 𝑒𝜖𝑘 −1

𝑒
max𝑗 𝜖𝑗 −1 less than 1 (𝑘 ∈ [𝑚]). For the sampling error, we

have:

𝑒𝑟𝑟𝑠 =
∑︁

𝜖𝑘<max𝑗 𝜖𝑗
𝑛𝑘𝑝𝑘 (1 − 𝑝𝑘 ) +

©­«
∑︁

𝜖𝑘<max𝑗 𝜖𝑗
𝑛𝑘 (1 − 𝑝𝑘 )

ª®¬
2

<
∑︁

𝜖𝑘<max𝑗 𝜖𝑗
𝑛𝑘

(
𝑝𝑘 + 1 − 𝑝𝑘

2

)2
+ ©­«

∑︁
𝜖𝑘<max𝑗 𝜖𝑗

𝑛𝑘
ª®¬

2

=
1
4
(𝑛 − 𝑛𝑀 ) + (𝑛 − 𝑛𝑀 )2

= (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1
4
) .

The noise error 𝑒𝑟𝑟𝑑𝑝 in this case is 2 · ( 𝐼
max𝑗 𝜖 𝑗 )

2 = 2𝐼 2

max𝑗 𝜖2
𝑗

. Thus,

the total error of 𝑀𝑅 is 𝑒𝑟𝑟𝑀𝑅 = (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1
4 ) +

2𝐼 2

max𝑗 𝜖2
𝑗

.

According to the OBS process, we have 𝑒𝑟𝑟𝑂 (𝑃) ≤ 𝑒𝑟𝑟𝑀𝐿 and
𝑒𝑟𝑟𝑂 (𝑃) ≤ 𝑒𝑟𝑟𝑀𝑅 . Therefore,

𝑒𝑟𝑟𝑂 (𝑃 ) ≤ min (𝑒𝑟𝑟𝑀𝐿 , 𝑒𝑟𝑟𝑀𝑅 )

= min

(
2𝐼2

min𝑗 𝜖2
𝑗

, (𝑛 − 𝑛𝑀 ) (𝑛 − 𝑛𝑀 + 1
4
) + 2𝐼2

max𝑗 𝜖2
𝑗

)
□

For PBD we present Theorem 4.2 as follows.

Theorem 4.2. The average error per time slot in PBD is at most
min

(
8

𝑑2𝜖𝐿
, 𝑍 + 8

𝑑2𝜖𝑅

)
+min

(
32· (4𝑠 −1)

3𝑠𝜖𝐿
, 𝑍 + 32· (4𝑠 −1)

3𝑠𝜖𝑅

)
where 𝑍 = (𝑛 −𝑛𝐴 ) (𝑛 −𝑛𝐴 +

1
4 ), if at most 𝑠 publications occur in any window with size 𝑤𝐿 .

PROOF. Given a privacy budget-quantity pair set 𝑃 , let 𝐸𝑂𝑃𝑇 (𝑃)
be the optimal privacy budget chosen from OBS. Given a positive
number 𝛽 , we define 𝛽 · 𝑃 = {(𝛽 · 𝜖 𝑗 , 𝑛 𝑗 ) | (𝜖 𝑗 , 𝑛 𝑗 ) ∈ 𝑃}. For each user
𝑢𝑖 with privacy requirement pair (𝑤𝑖 , 𝜖𝑖 ), we calculate their average
budget per window as 𝜖𝑖

𝑤𝑖
. We denote the set of all average budgets

as 𝜖 = { 𝜖𝑖
𝑤𝑖

|𝑖 ∈ [𝑛]}. We then construct the privacy budget-quantity
pair set of each type of average budget as 𝑃𝐴 = {(𝜖 𝑗 , 𝑛 𝑗 ) |𝜖 𝑗 ∈ 𝜖}.
Let 𝑍 = (𝑛 − 𝑛𝐴) (𝑛 − 𝑛𝐴 + 1

4 ) be the sampling error upper bound,
where 𝑛𝐴 is the quantity of max𝑖∈[𝑛]

𝜖𝑖
𝑤𝑖

in 𝜖.
When Part𝐷𝐶 is not private, the error stems from Part𝑁𝑂𝑃 . In

Part𝑁𝑂𝑃 , errors arise from both publications and approximations.
According to the Part𝑁𝑂𝑃 , an approximation error does not exceed
the publication error at the most recent publication time slot. For the
average error 𝑒𝑟𝑟𝑁𝑂𝑃 of all time slots within the window of size 𝑤𝐿 ,
based on the PBD process, we have:

𝑒𝑟𝑟𝑁𝑂𝑃 =
1
𝑤𝐿

∑︁
𝑘∈ [𝑠 ]

𝑤𝐿

𝑠
· 𝑒𝑟𝑟𝑂

(
1

2𝑘+1 𝑃𝐴

)

<
1
𝑠

∑︁
𝑘∈ [𝑠 ]

min ©­« 2
( 𝜖𝐿

2𝑘+1 )2
, 𝑍 + 2

( 𝜖𝑅
2𝑘+1 )2

ª®¬
<

1
𝑠

min ©­«
∑︁
𝑘∈ [𝑠 ]

8 · 4𝑘

𝜖2
𝐿

, 𝑠 · 𝑍 +
∑︁
𝑘∈ [𝑠 ]

8 · 4𝑘

𝜖2
𝑅

ª®¬
= min

(
32 · (4𝑠 − 1)

3𝑠𝜖2
𝐿

, 𝑍 + 32 · (4𝑠 − 1)
3𝑠𝜖2

𝑅

)
.

(16)

When Part𝐷𝐶 is private, the error from Part𝐷𝐶 can lead to two
scenarios: (1) falsely skipping a publication or (2) falsely performs
a publication. Both cases are bounded by the error in Part𝐷𝐶 . In
Part𝐷𝐶 , we execute the SM with OBS. The sensitivity of 𝑑𝑖𝑠 is 1/𝑑 .

For the average error 𝑒𝑟𝑟𝐷𝐶 of each time slot in window size 𝑤𝐿 ,
according to Lemma 4.1, we have:

𝑒𝑟𝑟𝐷𝐶 < min ©­« 2
𝑑2 min𝑖∈ [𝑛] (

𝜖𝑖
2𝑤𝑖

)2
, 𝑍 + 2

𝑑2 max𝑖∈ [𝑛] (
𝜖𝑖

2𝑤𝑖
)2

ª®¬
= min

(
8

𝑑2𝜖2
𝐿

, 𝑍 + 8
𝑑2𝜖2

𝑅

)
.

(17)

Based on Equation (17) and (16), we can get the average error
upper bound as 𝑒𝑟𝑟𝐷𝐶 + 𝑒𝑟𝑟𝑁𝑂𝑃 .

□

PBD achieves low error when the number of publications 𝑠 per
window is small. However, the error increases exponentially with
𝑠. Additionally, the error in Part𝐷𝐶 (the first part of the error upper
bound in PBD) rises as 𝑤𝐿 increases, however, it diminishes as 𝑑
increases. This is because a large 𝑑 reduces sensitivity leading to
smaller noise error.

For PBA, assume 𝛼 skipped publications occur before a publi-
cation. Let 𝜖

𝐿̃
and 𝜖

𝑅̃
be the minimum and maximum publication

privacy budget among all users at time slots 𝑡 = 𝑤𝐿 and 𝑡 = (𝛼 + 1),
respectively. According to the PBA process, there will be 𝛼 nulli-
fied publications after the publication. These nullified publications
are filled by the last time slot’s publication without comparison.
Consequently, the nullified publication error depends on the data
distribution at nullified time slots. We denote the average error of
each nullified publication in PBA as 𝑒𝑟𝑟𝑛𝑙 𝑓 . For PBA, we have
Theorem 4.3 as follows.

Theorem 4.3. The average error per time slot in PBA is at most
min( 8

𝑑2𝜖𝐿
, 𝑍 + 8

𝑑2𝜖𝑅
) + 1

2𝛼+1 (𝑒𝑟𝑟
(𝑠,𝑝 )
𝑁𝑂𝑃

+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ) where 𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

is

min( 2
𝜖2
𝐿

𝐻2
𝛼+1, (𝛼+1)𝑍+ 2

𝜖2
𝑅

𝐻2
𝛼+1) when 𝛼 ≤ 𝑤𝐿 and min( 2

𝜖2
𝐿

𝐻2
𝑤𝐿

,𝑤𝐿𝑍+
2
𝜖2
𝑅

𝐻2
𝑤𝐿

) + (𝛼 − 𝑤𝐿 + 1) min( 2
𝜖2
𝐿̃

, 𝑍 + 2
𝜖2
𝑅̃

) when 𝛼 > 𝑤𝐿 and 𝑍 =

(𝑛 − 𝑛𝐴) (𝑛 − 𝑛𝐴 + 1
4 ) and 𝐻2

𝑥 is the 𝑥-th square harmonic number,
if there are 𝛼 skipped publications occur in average before each
publication.

PROOF. Similar to PBD, we first analyze the error of Part𝑁𝑂𝑃

in PBA by assuming Part𝐷𝐶 is not private. We then add the error of
Part𝐷𝐶 , which is identical to that in PBD, to obtain the final total
error. When Part𝐷𝐶 is not private, the error stems from Part𝑁𝑂𝑃 . In
Part𝑁𝑂𝑃 , each publication corresponds to 𝛼 skipped publications
preceding it and 𝛼 nullified publications succeeding it.

For each user 𝑢𝑖 ’s skipped publication, the publication privacy
budget lower bound doubles with each time slot increase until it
reaches 𝜖𝑖/2 or a publication occurs. For example, in Figure 8, where
𝛼 = 5, the publication time slot is 𝑡6. At time slot 𝑡1, each 𝑢𝑖 ’s
publication budget lower bound is 𝜖𝑖/(2𝑤𝑖 ). Take 𝑢1 as an example:
it reaches 𝜖1/2 at time slot 𝑡4. The publication lower bound for 𝑢1
remains at 𝜖1/2 until time slot 𝑡6. Let the publication budget lower
bound set for all users at skipped time slots (spanning 𝛼 time slot) be
𝝐̂ = {𝝐1, 𝝐2, . . . , 𝝐𝛼 }. Then, the error upper bound of each skipped
publication is the error of publishing new data using 𝝐𝑘 (𝑘 ∈ [𝛼]).
For example in Figure 8, the error upper bound at 𝑡3 is the error of
publication a new obfuscated statistic result using { 3𝜖1

2 ,
𝜖2
2 ,

3𝜖3
16 ,

𝜖4
4 }.

Let 𝑍 = (𝑛 −𝑛𝐴) (𝑛 −𝑛𝐴 + 1
4 ) be the sampling error upper bound,

where 𝑛𝐴 is the number of users with maximum value of 𝜖𝑖
𝑤𝑖

. We
now consider two cases: 𝛼 ≤ 𝑤𝐿 and 𝛼 > 𝑤𝐿 .
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Figure 8: An example of the publication budget lower bound in PBA.

(1) case 1: 𝛼 ≤ 𝑤𝐿 .
In this case, the publication budget lower bound doubles with

each time slot increase. Let 𝑒𝑟𝑟 (𝑠𝑘 )
𝑁𝑂𝑃

(𝛼) and 𝑒𝑟𝑟
(𝑝𝑏 )
𝑁𝑂𝑃

be the total
error upper bounds of the 𝛼 skipped publications and the publication
in Part𝑁𝑂𝑃 , respectively. Let 𝑒𝑟𝑟 (𝑠,𝑝 )

𝑁𝑂𝑃
be the error of all skipped pub-

lications and the publication in Part𝑁𝑂𝑃 . According to Lemma 4.1,
we have

𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝛼 ) <
∑︁
𝑘∈ [𝛼 ]

min
(

2
(𝑘𝜖𝐿 )2 , 𝑍 + 2

(𝑘𝜖𝑅 )2

)
≤ min

(
2
𝜖2
𝐿

𝐻2
𝛼 , 𝛼𝑍 + 2

𝜖2
𝑅

𝐻2
𝛼

) (18)

and
𝑒𝑟𝑟

(𝑠,𝑝 )
𝑁𝑂𝑃

< 𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝛼 ) + 𝑒𝑟𝑟
(𝑝𝑏)
𝑁𝑂𝑃

= 𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝛼 + 1)

= min

(
2
𝜖2
𝐿

𝐻2
𝛼+1, (𝛼 + 1)𝑍 + 2

𝜖2
𝑅

𝐻2
𝛼+1

)
.

(19)

Thus, we derive the average error upper bound 𝑒𝑟𝑟𝑁𝑂𝑃 of each time
slot in Part𝑁𝑂𝑃 as

𝑒𝑟𝑟𝑁𝑂𝑃 <
1

2𝛼 + 1
(𝑒𝑟𝑟 (𝑠,𝑝 )

𝑁𝑂𝑃
+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ) (20)

where 𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

is the final value in Equation (19).
(2) case 2: 𝛼 > 𝑤𝐿 .
In this case, we have

𝑒𝑟𝑟
(𝑠,𝑝 )
𝑁𝑂𝑃

<𝑒𝑟𝑟
(𝑠𝑘 )
𝑁𝑂𝑃

(𝑤𝐿 ) +
𝛼+1∑︁

𝑘=𝑤𝐿+1
min ©­« 2

𝜖2
𝐿̃

, 𝑍 + 2
𝜖2
𝑅̃

ª®¬
=𝑒𝑟𝑟

(𝑠𝑘 )
𝑁𝑂𝑃

(𝑤𝐿 ) + (𝛼 − 𝑤𝐿 + 1) min ©­« 2
𝜖2
𝐿̃

, 𝑍 + 2
𝜖2
𝑅̃

ª®¬
< min

(
2
𝜖2
𝐿

𝐻2
𝑤𝐿

, 𝑤𝐿𝑍 + 2
𝜖2
𝑅

𝐻2
𝑤𝐿

)

+ (𝛼 − 𝑤𝐿 + 1) min ©­« 2
𝜖2
𝐿̃

, 𝑍 + 2
𝜖2
𝑅̃

ª®¬.

(21)

Therefore, we obtain the average error upper bound 𝑒𝑟𝑟𝑁𝑂𝑃 for each
time slot in Part𝑁𝑂𝑃 as

𝑒𝑟𝑟𝑁𝑂𝑃 <
1

2𝛼 + 1
(𝑒𝑟𝑟 (𝑠,𝑝 )

𝑁𝑂𝑃
+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ) (22)

where 𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

is the value derived in Equation (21).
When Part𝐷𝐶 is private, its error is identical to that in PBD:

𝑒𝑟𝑟𝐷𝐶 < min

(
8

𝑑2𝜖2
𝐿

, 𝑍 + 8
𝑑2𝜖2

𝑅

)
. (23)

(a) Taxi (b) Foursquare

Figure 9: Illustration of Real datasets.

Based on Equation (23), (20) and (22), we can derive the average
error upper bound for each time slot in PBA as:

min

(
8

𝑑2𝜖2
𝐿

, 𝑍 + 8
𝑑2𝜖2

𝑅

)
+ 1

2𝛼 + 1
(𝑒𝑟𝑟 (𝑠,𝑝 )

𝑁𝑂𝑃
+ 𝛼 · 𝑒𝑟𝑟𝑛𝑙 𝑓 ), (24)

where 𝑒𝑟𝑟 (𝑠,𝑝 )
𝑁𝑂𝑃

is the final result from Equation (19) when 𝛼 ≤ 𝑤𝐿 ,
and from Equation (21) when 𝛼 > 𝑤𝐿 . □

5 EXPERIMENTS
5.1 Datasets
We evaluate our solutions on both real and synthetic datasets.
Real datasets. We use two real-world datasets, Taxi [37, 38] and
Foursquare [35, 36], to evaluate the performance of our algorithms.

Taxi. It contains real-time trajectories of 10, 357 taxis’ in Beijing
from February 2 to February 8, 2008. Each taxi has up to 154, 699
records, where each record comprises taxi id, data time, longitude
and latitude. For the spatial dimension, we first remove all duplicate
records, then extract records with longitude between 116 and 116.8
and latitude between 39.5 and [40.3], resulting in 14, 859, 377 records.
We denote this area ([116, 116.8] × [39.5, 40.3]) as 𝐴𝐸 . Figure 9(a)
shows 50% of uniformly extracted trajectory points in 𝐴𝐸 . We further
divide 𝐴𝐸 uniformly into a 10 × 10 grids, designating these 100 cells
as the location space. For the time dimension, we sample records
every minute and get 8, 889 records.

Foursquare. It contains 33, 278, 683 Foursquare check-ins from
266, 909 users, during April 2012 to September 2013. Each record
consists of user id, venue id (place), and time. We convert the venue
id to the country where the venue is located. After removing invalid
records, we uniformly extract 5% of users’ check-ins as shown in
Figure 9(b). We set the publication time interval to 100 minutes, thus
divide the chick-ins period into 7, 649 time slots.
Synthetic datasets. We generate three binary stream datasets using
different sequence models. Let 𝑝𝑡 = 𝑓 (𝑡) be the probability of setting
the real value to 1 at time slot 𝑡 . We set the length of each binary
stream as 𝑇 and the number of users as 𝑁 . For each stream, we first
generate a probability sequence (𝑝1, 𝑝2, ..., 𝑝𝑇 ). At each time slot 𝑡 ,
each user’s real value is set to 1 with probability 𝑝𝑡 and 0 otherwise.
The probability functions we use are as follows:

• TLNS function. In TLNS, 𝑝𝑡 = 𝑝𝑡−1 + N(0, 𝑄), where
N(0, 𝑄) is Gaussian noise with standard variance

√
𝑄 =

0.0025. We set 𝑝0 = 0.05 as the initial value. If 𝑝𝑡 < 0, we
set 𝑝𝑡 = 0; If 𝑝𝑡 > 1, we set 𝑝𝑡 = 1.

• Sin function. In Sin, 𝑝𝑡 = 𝐴 sin (𝜔𝑡) + ℎ, where 𝐴 = 0.05,
𝜔 = 0.01 and ℎ = 0.075.

• Log function. In Log, 𝑝𝑡 = 𝐴/(1 + 𝑒−𝑏𝑡 ), where 𝐴 = 0.25
and 𝑏 = 0.01.
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Table 3: Experimental settings.
Parameters Values

static privacy budget 𝜖 0.2, 0.4, 0.6, 0.8, 1.0
static window size 𝑤 40, 80, 120, 160, 200
personalized privacy budget 𝜖𝑖 𝜖, . . . , 0.8, 1.0
personalized window size 𝑤𝑖 40, 80, . . . , 𝑤
users’ quantity ratio 𝑜 0.1, 0.3, 0.5, 0.7, 0.9

5.2 Experiment Setup
We divide the total time series into two batches for all datasets, with
each batch containing at most half of the total time slots.

We compare our PBD and PBA with two non-personalized meth-
ods: Budget Distribution (BD) and Budget Absorption (BA) [22].
We also compare against a simple personalized LDP method, Person-
alized LDP Budget Uniform (PLBU), which extends LDP Budget
Uniform (LBU) [29] by replacing the inner CDP mechanism with
an LDP mechanism.

Let 𝜖 and 𝑤 be the privacy budget and window size in non-
personalized static methods (BD and BA). For non-personalized
static methods, we set the 𝜖 to vary from 0.2 to 1.0 and 𝑤 to vary
from 40 to 200. To make our PBD and PBA comparable with BD
and BA, we set the lower bound of each user’s privacy budget as 𝜖
and the upper bound of each user’s window size as 𝑤 in PBD and
PBA to match the requirement of privacy level.

Given 𝑛̃ different privacy budgets 𝝐 = {𝜖1, ..., 𝜖𝑛̃}, let 𝑁 (𝜖𝑖 ) be the
count of budget value 𝜖𝑖 , and 𝑁 (𝝐) = ∑𝑛̃

𝑖=1 𝑁 (𝜖𝑖 ) be the total count
of all the budgets. For any 𝜖𝑖 ∈ 𝝐 , we define the privacy budget ratio
of 𝜖𝑖 as 𝑁 (𝜖𝑖 )

𝑁 (𝝐 ) . Similarly, we define the window size ratio of any

𝑤𝑖 in different window sizes 𝒘̃ = {𝑤1, ...,𝑤𝑛̃} as 𝑁 (𝑤𝑖 )
𝑁 (𝒘̃ ) . We set the

privacy domain as {0.5, 1.0} and the window size domain as {10, 20}.
We alter the ratio 𝑜 of 𝜖𝑖 = 0.5 and 𝑤𝑖 = 10 from 0.1 to 0.9.

The parameters are shown in Table 3, where the default values are
in bold font. We run the experiments on an Intel(R) Xeon(R) Silver
4210R CPU @ 2.4GHz with 128 RAM in Java. Each experiment is
run 10 times, and we report the average result.

5.3 Measures
We evaluate the performance of different mechanisms based on their
running time and data utility. We measure data utility as Average
Mean Relative Error (𝐴𝑀𝑅𝐸) and Average Jensen-Shannon Diver-
gence (𝐴𝐽𝑆𝐷, 𝐷̄ 𝐽 𝑆 ). Let 𝑇 represent the number of time slots and 𝑑

denote the dimension of data.
𝐴𝑀𝑅𝐸 is defined as the average value of Mean Relative Error

(𝑀𝑅𝐸), which is shown in Equation (25).

𝐴𝑀𝑅𝐸 =
1
𝑇

𝑇∑︁
𝜏=1

𝑀𝑅𝐸𝜏 =
1
𝑇

𝑇∑︁
𝜏=1

1
𝑑
∥𝒓𝜏 − 𝒄𝜏 ∥2

2 . (25)

𝐴𝐽𝑆𝐷 is defined as the average value of Jensen-Shannon Diver-
gence (𝐽𝑆𝐷, 𝐷 𝐽 𝑆 ) [25], which is based on Kullback-Leibler Diver-
gence [24], as shown in Equation (26).

𝐷̄ 𝐽 𝑆 (𝒓 ∥𝒄 ) =
1
𝑇

𝑇∑︁
𝜏=1

𝐷 𝐽 𝑆 (𝒓 ∥𝒄 )

=
1
𝑇

𝑇∑︁
𝜏=1

(
1
2
𝐷𝐾𝐿 (𝒓 ∥𝒗 ) +

1
2
𝐷𝐾𝐿 (𝒄 ∥𝒗 )

)
=

1
2𝑇

𝑇∑︁
𝜏=1

𝑑∑︁
𝑗=1

(
𝒓𝜏 ( 𝑗 ) log

(
𝒓𝜏 ( 𝑗 )
𝒗𝜏 ( 𝑗 )

)
+ 𝒄𝜏 ( 𝑗 ) log

(
𝒄𝜏 ( 𝑗 )
𝒗𝜏 ( 𝑗 )

))
,

(26)

where 𝒗 represents the average distribution of 𝒓 and 𝒄, i.e., 𝒗 ( 𝑗) =
1
2 (𝒓 ( 𝑗) + 𝒄 ( 𝑗)). For time slot 𝜏 , 𝑟𝜏 ( 𝑗) and 𝑐𝜏 ( 𝑗) represent the 𝑗-th
dimensional values in the obfuscated and original data, respectively.

5.4 Overall Utility Analysis
Figure 10 shows the natural logarithm of 𝐴𝑀𝑅𝐸 as the privacy bud-
get 𝜖 varies. Across all datasets, 𝐴𝑀𝑅𝐸 decreases as 𝜖 increases,
because a larger 𝜖 results in smaller noise variance, leading to a
lower 𝐴𝑀𝑅𝐸. The decrease in 𝐴𝑀𝑅𝐸 is more pronounced on real
datasets compared to synthetic ones. It is because data density func-
tion changes rapidly in real datasets, while changing gradually in
synthetic datasets. When the density function changes rapidly, the
dissimilarity at each time slot becomes large. In this case, PBD pub-
lishes more new statistical results than PBA because PBD always
reserves part of its privacy budget for the next time slot, even though
the budget decreases over time within a window. Thus, PBD leads to
higher accuracy than PBA. When the density function changes grad-
ually, the dissimilarity at each time slot remains small. In this case,
publishing one highly accurate statistical result at a time slot is more
important than publishing multiple new statistical results. Therefore,
PBA performs significantly better than PBD. PLBU performs worse
than other methods across all datasets except for TLNS, since LDP
methods achieve lower accuracy than CDP methods under the same
privacy budget. In real datasets, our PBD consistently outperforms
other methods. The 𝐴𝑀𝑅𝐸 of PBD is on average 70.8% (17.5% in
terms of ln (𝐴𝑀𝑅𝐸)) lower than that of BD on Taxi dataset and
69.6% (15.9% in terms of ln (𝐴𝑀𝑅𝐸)) lower on Foursquare dataset.
Our PBA performs slightly worse than BA, since our PBA is more
sensitive to noise in high-dimensional data. For synthetic datasets,
our PBA consistently outperforms other methods. Compared to BA,
the 𝐴𝑀𝑅𝐸 of PBA is lower on average of 36.9% (6.0% in terms of
ln (𝐴𝑀𝑅𝐸)) on TLNS dataset, 27.7% (4.2% in terms of ln (𝐴𝑀𝑅𝐸))
on Sin dataset, and 28.9% (4.5% in terms of ln (𝐴𝑀𝑅𝐸)) on Log
dataset. Moreover, our PBD consistently outperforms BD.

Figure 11 shows the natural logarithm of 𝐴𝑀𝑅𝐸 as the window
size𝑤 varies. As𝑤 increases, 𝐴𝑀𝑅𝐸 rises gently, particularly on the
synthetic datasets. This occurs because a large window size results
in a small privacy budget at each time slot, leading to increased error.
PLBU shows lower performance than other methods on all datasets
except for TLNS, since LDP methods achieve lower accuracy than
CDP methods under equivalent privacy budgets. For real datasets,
our PBD achieves the lowest error compared to others methods. The
𝐴𝑀𝑅𝐸 of PBD is on average 63.1% (15.6% in terms of ln (𝐴𝑀𝑅𝐸))
lower than that of BD on Taxi dataset and 68.4% (16.5% in terms
of ln (𝐴𝑀𝑅𝐸)) on Foursquare dataset. For synthetic datasets, our
PBA demonstrates the lowest error among all methods. Compared to
BA, the 𝐴𝑀𝑅𝐸 of PBA is lower by average of 35.1% (5.4% in terms
of ln (𝐴𝑀𝑅𝐸)) for TLNS, 4.2% (0.4% in terms of ln (𝐴𝑀𝑅𝐸)) for
Sin, and 16.6% (2.2% in terms of ln (𝐴𝑀𝑅𝐸)) for Log. Moreover, our
PBD consistently outperforms BD across all datasets.

In summary, our PBD demonstrates superior performance on real
datasets, with an 𝐴𝑀𝑅𝐸 at least 63% lower than BD. For synthetic
datasets, our PBA outperforms BA with at least 16% smaller 𝐴𝑀𝑅𝐸.
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Figure 10: 𝐴𝑀𝑅𝐸 with 𝜖 varied.
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Figure 11: 𝐴𝑀𝑅𝐸 with 𝑤 varied.
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Figure 12: 𝐴𝑀𝑅𝐸 with ratio for privacy budget varied.
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Figure 13: 𝐴𝑀𝑅𝐸 with ratio for window size varied.

5.5 Impact of User Requirement Type
We define a set of users with privacy requirement as (𝑤𝑘 , 𝜖𝑘 )-requirement
type. In this subsection, we examine the impact of user type on the
utility. For our analysis, we set 𝜖𝑘 candidate set as {0.6, 1.0} with a
default value of 0.6, and the 𝑤𝑘 candidate set as {40, 120} with a de-
fault value of 120. We first vary the users’ quantity ratio of 𝜖𝑘 = 1.0
from 0.1 to 0.9 while keeping 𝑤𝑘 = 120, and then vary the users’
quantity ratio of 𝑤𝑘 = 40 from 0.1 to 0.9 while keeping 𝜖𝑘 = 0.6. We
analyze the impact of these ratio variations on 𝐴𝑀𝑅𝐸.

Figure 12 illustrates the change in users’ quantity ratio for 𝜖𝑘 =

1.0 from 0.1 to 0.9, with a fixed window size of 𝑤𝑘 = 120. Figure 13
shows the effect on changing users’ quantity for𝑤𝑘 = 40 from 0.1 to
0.9, with a fixed privacy budget of 𝜖𝑘 = 0.6. We observe that as the
users’ quantity ratio increases, the 𝐴𝑀𝑅𝐸 remains relatively stable.

However, when the users’ quantity ratio of 𝜖𝑘 = 1.0 or 𝑤𝑘 = 40
exceeds 0.8, we can see a significant decrease in 𝐴𝑀𝑅𝐸 for PBD
and PBA. This occurs because when the ratios surpasses a certain
threshold, the optimal budget from OBS in Algorithm 1 becomes
dominated by a higher 𝜖, resulting in lower error.

6 CONCLUSION
In this paper, we address the problem of Personalized𝑤-event Private
Publishing for Infinite Data Streams. We propose a mechanism called
PWSM and two methods called PBD and PBA to solve this problem
in scenarios with personalized privacy budget and window sizes for
each users. We also compare our PBD and PBA with recent solutions
to demonstrate their efficiency and effectiveness.
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