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Abstract—Estimating spatial distributions is important in data
analysis, such as traffic flow forecasting and epidemic prevention.
To achieve accurate spatial distribution estimation, the analysis
needs to collect sufficient user data. However, collecting data
directly from individuals could compromise their privacy. Most
previous works focused on private distribution estimation for one-
dimensional data, which does not consider spatial data relation
and leads to poor accuracy for spatial distribution estimation. In
this paper, we address the problem of private spatial distribution
estimation, where we collect spatial data from individuals and
aim to minimize the distance between the actual distribution
and estimated one under Local Differential Privacy (LDP). To
leverage the numerical nature of the domain, we project spatial
data and its relationships onto a one-dimensional distribution.
We then use this projection to estimate the overall spatial
distribution. Specifically, we propose a reporting mechanism
called Disk Area Mechanism (DAM), which projects the spatial
domain onto a line and optimizes the estimation using the sliced
Wasserstein distance. Through extensive experiments, we show
the effectiveness of our DAM approach on both real and synthetic
data sets, compared with the state-of-the-art methods, such as
Multi-dimensional Square Wave Mechanism (MDSW) and Subset
Exponential Mechanism with Geo-I (SEM-Geo-I). Our results
show that our DAM always performs better than MDSW and is
better than SEM-Geo-I when the data granularity is fine enough.

I. INTRODUCTION

With the popularity of smart devices and the high quality
of wireless networks, people can easily access the Internet
and communicate with online services. Convenient online
service platforms, such as ride-hailing apps, collect user data,
analyze it, and provide better services in return. For example,
collecting vehicle locations and analyzing traffic flow can
help ride-hailing drivers avoid traffic jams. However, directly
collecting data could compromise individuals’ privacy, leading
to users refusing to share their information. In traffic flow
forecasting, if a driver submits his/her locations to the platform
over a period (e.g., a month), a malicious platform attacker
could predict the driver’s activity range and surveil him/her.

Differential Privacy (DP) [1] is a privacy standard that
resolves conflicts between data privacy and data analysis with
the aid of a trusted server. To further avoid information leakage
on the trust server, a method for DP in a local setting,
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Fig. 1: shooting victims per 1,000 residents of Chicago in 2021

called Local Differential Privacy (LDP), has been proposed
recently [2]. In LDP, there are multiple users and one analyst.
First, all users randomize their actual information (to protect
their privacy) themselves and send it to the analyst. Then,
the analyst estimates the users’ distribution based on the
randomized information. These two steps by the users and
analyst are encapsulated as Frequency Oracle [3] (FO) for
count queries under LDP. As an efficient tool, FO has been
widely used to resolve distribution estimation under LDP [3],
[4], [5], [6], [7] and various private query issues, such as
private range queries [8], [9], [10], [8], [11].

Traditional FO performs well for estimating categorical data
distribution (i.e., data without order) [6]. Similar to existing
studies [3], [7], [12], we can directly dividing the spatial area
into unrelated grids and apply traditional FO to estimate the
spatial distribution. However, in the spatial (2-Dim) context,
there is a strong ordinal relationship between any pair of
data points. For example, a heavily congested traffic junction
is more likely to cause blockages at nearby junctions than
those farther away. Similarly, a COVID-19 affected area is
more likely to lead to outbreaks in surrounding areas than in
distant ones. Therefore, if we use traditional FO, the ordinal
relationship in the domain may be ignored, which may lead
to poor estimation accuracy [6].

In this paper, we study the problem of private spatial
distribution estimation, in which each user publishes their
data under LDP, and the analyst estimates the distribution of
these users to minimize the difference between the actual and
recovered density distributions. To illustrate the motivation for
this problem, we consider the following example:
Example 1. As shown in Figure 1, an analyst wants to



estimate the shooting distribution in Chicago. To do this, the
analyst needs to collect shooting points in this area and count
the number of points at each location. In order to protect
the actual shooting locations and maintain social stability, the
police use an LDP mechanism to randomize the locations and
send these randomized locations to the analyst. After collecting
all randomized locations, the analyst can estimate the shooting
distribution of Chicago.

Take point v as a shooting instance. Given another shooting
instance point u, we denote the distance between v and u as
dis(v, u). If we regard locations as categorical points, ac-
cording to traditional FO (i.e., Categorical Frequency Oracle
(CFO) [6]), v will be published as u1 or u2 with the same
low probability. This method neglects the location ordinal
relationship among the nodes (i.e., dis(v, u1) < dis(v, u2)).
In this way, it is both dangerous for the citizens of Chicago
(the shooter can easily move to u1 rather than u2) and
leads to poor estimation accuracy for shooting distribution.
Considering the location ordinal relationship, u1 is closer to
v than u2. Thus, for v’s randomized points, the probability of
choosing u1 should be higher than that of u2.

Many studies use mean absolute error, variances or
Kullback-Leibler (KL) Divergence [13] as metrics for distribu-
tion estimation [6]. However, none of these metrics effectively
capture the ordinal relationship. In this paper, we use the
common-used 2-Dim Wasserstein distance [14] to measure
the difference between two distributions while capturing the
spatial ordinal relationship. Based on 2-Dim Wasserstein dis-
tance, we propose a general spatial distribution estimation
mechanism called Spatial Area Mechanism (SAM), which
achieves ϵ-LDP. Additionally, we introduce a simple imple-
mentation mechanism of Spatial Area Mechanism called Hy-
brid Uniform-Exponential Mechanism (HUEM). To optimize
SAM, we need the close forms of 2-Dim Wasserstein Distance.
However, except for the 2-Dim normal (Gaussian) distribution,
there are no closed forms for 2-Dim Wasserstein distance when
the data dimension is greater than 1 [14], making it difficult to
optimize the estimation utility. A direct method is to optimize
each dimension estimation according to the 1-Dim Wasserstein
distance and then combine them (MSW [10]). However, this
approach loses the spatial ordinal relationship. To address
this problem, we use the Radon Transform [15] to project
spatial data onto one-dimensional (1-Dim) data and transform
the 2-Dim Wasserstein distance into the Sliced Wasserstein
distance [16]. Based on the sliced Wasserstein distance metric,
we propose Disk Area Mechanism (DAM) and prove that it is
optimal among all types of SAM. To implement our DAM on
real data (discretized domain), we design a grid partition and
shrinkage method to effectively bucketize the data. Our DAM
achieves a lower 2-Dim Wasserstein distance (between the re-
covered and actual density distributions) than the state-of-the-
art Multi-dimensional Square Wave Mechanism (MDSW) [10]
and the categorical Subset Exponential Mechanism with Geo-
I (SEM-Geo-I) [12]. The contributions of this paper are as
follows:

TABLE I: The summary of related studies.
classified name mechanism name catch numeric meet SDP locally
central privacy PSD+Geocast [18] ×

√
×

local privacy ID-LDP [19] ×
√ √

Geo-I [20] 2-Dim
√ √

categoric Bucket+CFO [3], [7] ×
√ √

numeric

SEM-Geo-I [12] 2-Dim
√ √

SR [4] 1-Dim ×
√

PM [5] 1-Dim ×
√

SW-EMS [6] 1-Dim ×
√

one-dimensional

multi-dimensional

PSD [21] ×
√

×
AG [22] ×

√
×

HIO [9] ×
√ √

AHEAD [8] ×
√ √

MSW, HDG [10] 1-Dim
√ √

\ Our mechanism 2-Dim
√ √

• We formally define our Private Spatial Distribution Estima-
tion Problem (PSDEP) in Section III and propose a mecha-
nism structure called Spatial Area Mechanism (SAM) and a
direct baseline method called Hybrid Uniform-Exponential
Mechanism (HUEM) in Section IV.

• We propose Disk Area Mechanism (DAM) and analyze how
to choose the best norm distance b in Section V.

• We introduce the implementation of our DAM including
grid partitioning, shrinkage and post-process in Section VI.

• We unify local differential privacy mechanisms (e.g., DAM)
and Geo-I mechanisms (e.g., SEM-Geo-I [12]) by the local
privacy mechanism [17] and conduct experimental evalua-
tions of our proposed method on both real and synthetic
datasets to demonstrate its efficiency and effectiveness in
Section VII.

II. RELATED WORK

The privacy protection is an important issue in spatial
data statistics. It requires obtaining accurate statistical results
while protecting individuals’ information from being released.
Differential privacy [1] is a key tool for privacy protection and
privacy-preserving data release. We classify related work based
on differential privacy into three dimensions and summarize
it in Table I.
Central / Local Differential Privacy. Conventional differ-
ential privacy requires a trusted third party to collect in-
dividuals’ data and randomize it under differential private
mechanisms [18]. However, the third party may be attacked
by malicious entities, hindering individuals from sharing their
information. To address this issue, local differential privacy
(LDP) [23], [24] is proposed, where individuals random-
ize their own information and then report the randomized
messages to the estimator. Gu et al. [19] propose input-
discriminative LDP, which can satisfy different privacy lev-
els required by different individuals simultaneously. Andrés
and Bordenabe [20] propose Geo-Indistinguishability (Geo-I),
which provides high privacy within short distances and low
privacy with long distances. However, both of these designs
detriment the privacy of LDP.
Categorical / Numerical Frequency Oracle. To handle
the issue of releasing numeric data under Local Differential
Privacy (LDP), a popular method is to apply Categorical
Frequency Oracle (CFO, FO) [3], [7]. The basic process is
to first divide the numeric data into several buckets and then



use CFO to estimate the result. However, simply dividing the
data leads to information loss during comparison. Duchi et
al. [4] propose Stochastic Rounding (SR) to handle numerical
settings. In SR, a value v in the interval [−1, 1] returns −1 with
probability 1

2 −
eϵ−1

2(eϵ+1)v and 1 with probability 1
2 +

eϵ−1
2(eϵ+1)v.

Wang et al. [5] propose the Piecewise mechanism (PM),
where the input domain is [−1, 1] and the output domain is
[−s, s], with s = eϵ/2+1

eϵ/2−1
. Given an input point v, it returns

a point in the subinterval [ e
ϵ/2v−1
eϵ/2−1

, eϵ/2v+1
eϵ/2−1

] with probability
eϵ/2(eϵ/2−1)
2(eϵ/2+1)

, and the complement subinterval with probability
eϵ/2−1

2eϵ/2(eϵ/2+1)
. Note that both SR and PM focus on the specific

task of mean estimation. Li et al. [6] propose the Square Wave
mechanism with Expectation Maximization Smoothing (SW-
EMS) to handle numerical distribution under local differential
privacy (LDP). SW-EMS is a new numeric frequency oracle
that makes full use of ordinal relations to obtain much more
accurate estimations without breaching privacy. However, SW-
EMS only focuses on one-dimensional data, and is therefore
not suitable for estimating spatial distributions (SDP). Wang
et al. [12] propose the Subset Exponential Mechanism under
ϵ-Geo-I constraints (SEM-Geo-I). SEM-Geo-I can achieve
accurate estimation, however, it only provides strictly weaker
privacy based on Geo-I.

One / Multiple Dimensional Data Estimation. Several works
have been proposed for handling spatial data with traditional
differential privacy. Cormode et al. [21] design a new structure
called PSD, which utilizes indexing methods such as quadtrees
and kd-trees to generate spatial decompositions for describing
the data distribution. Similarly, Qardaji et al. [22] present an
Adaptive Grid (AG) approach to release a synopsis for 2-Dim
geospatial data. However, both PSD and AG require the aid of
a trusted third party. Yang et al. [10] propose the Multiplied
Square Wave (MSW) mechanism, which extends the SW-
EMS [6] mechanism. MSW provides an accurate estimation
for multi-dimensional data under Local Differential Privacy
(LDP). However, it can only capture the correlation in one
dimension, which leads to high error. In order to capture
the correlation among different dimensions, they propose the
Hybrid-Dimensional Grids (HDG) method. HDG divides the
n-Dim dimensional data into 1-Dim and 2-Dim grids and
use these grids to capture the correlation among different
dimensions in range query. However 1-Dim grids in HDG may
still destroy the correlation among different dimension data.
Du et al. [8] propose the Adaptive Hierarchical Decomposi-
tion (AHEAD) method based on HIO [9] to further improve
the private range query by adaptively choosing the granularity
of domain composition. However HDG and AHEAD do not
catch the numeric (the distance) in spatial relationship from
different randomized points to the real points.

Our mechanism can not only catch the numeric relationship
and accurately estimate spatial distribution estimation under
LDP, but also combine with the methods of HIO, HDG and
AHEAD to further improve the accuracy in private range
query.

TABLE II: Notations.
Notations Description
k-Dim k-dimension
D, I the input domain
D̃, T the output domain
Î the inferred (estimated) domain of I domain
D an input instance

D̃, O an output instance instance
v a spatial data point
ṽ a disturbed point of v

Mv(ṽ) the probability of randomizing v as ṽ
W (·) the wave function

W p
k

a k dimensional Wasserstein distance
with p norm cost function

Wk(·) the p-th root of W p
k (i.e., Wk(·) = p

√
W p

k )

SW p
k

a k dimensional sliced Wasserstein distance
with p norm cost function

b a high dimensional radius
L the side length of an input instance
g the side length of a grid cell
d the number of cells along a side of grid length
n the number of cells in the grid

III. PROBLEM DEFINITION

In this section, we provide basic notations and preliminaries,
distance metrics, and formal definition of our Private Spatial
Distribution Estimation Problem (PSDEP). Table II summa-
rizes the key notations used throughout this paper.

A. Basic Notations and Preliminaries

We use the notation [a1 : a2] to denote an integer series from
a1 to a2 and abbreviate [a1 : a2] to [a2] when a1 = 1. We use
x

$←− X to indicate uniformly sampling an element x from set
X . We use v to indicate a point with index (xv, yv) in the Plan-
Rectangular coordinate system [25] and (rv, θv) in the Polar
coordinate system [25]. The input domain is denoted as D, and
the output domain is denoted as D̃. We use ∥M∥p to denote the
p-norm of any matrix M , where p ∈ N∪{∞}. We denote the
inner product of matrices A1 and A2 as A1 ·A2, the element-
wise product (also called Hadamard product) as A1

⊙
A2.

For example, let A1 = (ci,j)n×n and A2 = (di,j)n×n for
1 ≤ i, j ≤ n. Then we have A1

⊙
A2 = (ci,jdi,j)n×n for

1 ≤ i, j ≤ n. We abbreviate k-dimension as k-Dim. When
k = 2, we also call the data as spatial data.

We utilize Local Differential Privacy (LDP) [2] to protect
the privacy of original data locations.

Definition 1. (ϵ-Local differential privacy, ϵ-LDP [2]). An
algorithm M(·) : D → D̃ satisfies ϵ-local differential privacy
(ϵ-LDP), where ϵ ≥ 0 if and only if for any input values
v1, v2 ∈ D, we have

∀S ⊂ D̃ : Pr[M(v1) ∈ S] ≤ eϵ Pr[M(v2) ∈ S],

where D̃ denotes the set of all possible output of M .

Based on the Local Differential Privacy model, a standard
protocol called Frequency Oracle (FO) [26] for frequency
estimation has been proposed. FO is composed of two func-
tions, namely, the randomized reporting function FO.T and
the estimation function FO.E. FO.T is used to randomize



the raw data into a kind of randomized data, while FO.E is
used to estimate the raw data based on the randomized data.

B. Distance Metrics
Definition 2. (Wasserstein Distance [14]). Let Pp(Rk) be
the space of Borel probability measures on Rk with finite
p-th moments, i.e. for all µ ∈ Pp(Rk),

∫
Rk |x|p < ∞. Let

µA, µB ∈ Pp(Rk) then we define the Lp
k-Wasserstein distance

as:

W
p
k (µA, µB) = inf

{∫
Rk×Rk

|x − y|pdπ(x, y) : π ∈ Π(µA, µB)

}
,

where inf is the infimum (greatest lower bound) function and
Π(µA, µB) is the complete set of joint distributions of µA and
µB .

Wasserstein distance [14] (also called Earth Mover’s dis-
tance) is a metric on probability distributions used to measure
the minimal effort of probability mass from one distribution
to another. It can be used to measure the similarity between
two distributions.

C. PSDEP Definition

We give our problem definition in Definition 3 as follows.

Definition 3. (Private Spatial Distribution Estimation Prob-
lem, PSDEP). Given a set of ordinal spatial values V ⊆ R2

with χ distinct values, a privacy budget ϵ, a PSDEP is to design
a frequency oracle mechanism FO =< T,E > satisfying that
for the actual distribution D ∈ Rχ of V , FO outputs D̃ ∈ Rχ,
where FO.T satisfies ϵ-LDP and the L2

2-Wasserstein distance
W 2

2 (D, D̃) is minimized.

IV. THE HYBRID UNIFORM-EXPONENTIAL MECHANISM

In this section, we first declare the definition of the in-
put/output domain and the randomized function. Then we
propose a general Spatial Area Mechanism (SAM) and prove
that it satisfies ϵ-LDP. After that we introduce a direct im-
plementation mechanism of SAM called Hybrid Uniform-
Exponential Mechanism (HUEM), and analyze its accuracy.
Input/Output Domain. Without loss of generality, we define
the input domain D = {v|xv ∈ [0, 1], yv ∈ [0, 1]} as a square
with side length 1. For any input point v, we define its b
distance set as DSb(v) = {u|∥u − v∥2 ≤ b}. We define
the output domain as the union set of all points’ DSb in D,
namely, D̃ =

⋃
v∈D{DSb}. We call b as the high probability

radius. Figure 2 shows the input and output domains. The
input domain D is the black square with side length 1. The
output domain D̃ is the red rounded square. For a point v ∈ D,
its DSb is the point located within the green circle.
Randomized Reporting Function. For any input point v ∈
D, let Mv : D̃ → [0, 1] be the probability density functions
(PDF) over the output domain D̃. Spatially, Mv(ṽ) means the
probability of randomizing v as ṽ. We define the randomized
reporting functions as a family of PDF over the output domain
(i.e., {Mv(·)}v∈D).
Spatial Area Mechanism (SAM). Based on the input/output
domain and randomized reporting function, we propose our
Spatial Area Mechanism in Definition 4.

Fig. 2: Radon Transform and I/O domain with any real point.

Definition 4. (Spatial Area Mechanism (SAM)). A random-
ized mechanism Ψ : D → D̃ is an instance of Spatial
Area Mechanism if for all v ∈ D, there is a 2-dimension
wave function W : R2 → [q, eϵq] with constant q > 0
and ϵ > 0 such that the output probability density function
Mv(ṽ) = W (ṽ − v) satisfies:
(1) W (z) = q for ∥ z ∥2> b
(2)

∫∫
D
W (z)dz = 1− (4b+ 1)q for D = {z| ∥ z ∥2≤ b}

SAM is a general mechanism structure. It declares a wave
function W with range between q and eϵq. Based on the
function W , it claims two conditions for the areas within and
out of b distance. Noted that, in condition (2) (distance within
b), the distribution function of W (z) is not defined. The only
constrain is the integral in this area keeps 1− (4b+ 1)q.

Theorem IV.1. SAM satisfies ϵ-LDP.

Proof. For any two possible input values v1,v2 ∈ D and any
set of possible outputs O ⊆ D̃ of SAM, we have

Pr[SAM(v1) ∈ O]

Pr[SAM(v2) ∈ O]
=

∫∫
ṽ∈O

Mv1
(ṽ)dṽ∫∫

ṽ∈O
Mv2

(ṽ)dṽ

≤
∫∫

ṽ∈O
eϵqdṽ∫∫

ṽ∈O
qdṽ

= e
ϵ

(1)

For any v ∈ D and ṽ ∈ D̃, it is reasonable to assume that
the reporting probability Mv(ṽ) decreases as the dis(v, ṽ)
increases (similar to Reference [20]). To model this relation-
ship, we propose our Hybrid Uniform-Exponential Mechanism
in Definition 5.

Definition 5. (Hybrid Uniform-Exponential Mechanism,
HUEM). A SAM is called a Hybrid Uniform-Exponential
Mechanism if the W function satisfies:

W (z) =

{
qe(1−

∥z∥2
b

)ϵ, if ∥z∥2 ≤ b

q, otherwise
(2)

where q = ϵ2

2π(eϵ−1−ϵ)b2+4ϵ2b+ϵ2 .

HUEM is a type of SAM by adding constrain that W ’s
value increases exponentially with distance ∥z∥2 decreases.
From Equation (2), we can see when z = 0, W (z) = qeϵ.
This means W achieves its maximum value (i.e., qeϵ) when
the output point is exactly the same as the input one.

Let C = {z|∥z∥2 ≤ b} and r = ∥z∥2. According to∫∫
C qe

(1− r
b )ϵrdrdθ = 1 − (4b + 1)q, we can obtain q =
ϵ2

2π(eϵ−1−ϵ)b2+4ϵ2b+ϵ2 . As ϵ → 0, q → 1
πb2+4b+1 . In this

case, HUEM degenerates into uniform random mechanism. It
reports any value uniformly and randomly, without any utility



(a) Radon transform (b) Wasserstein distance
transform

Fig. 3: Radon transform and sliced Wasserstein distance transform.

guarantee. As ϵ→ +∞, q → 0, which means HUEM reports
the truthful value without any privacy protection.

We take HUEM as one of our basic mechanisms and
compare it with others in the experiment.

V. THE DISK AREA MECHANISM

Although HUEM achieves ϵ-LDP, it requires a strong as-
sumption that the probability within radius b decreases with
distance (similar to Geo-I [20]). In this section, we remove
this assumption and study the best probability distribution
mechanism of SAM to maximize the accuracy of distribution
estimation, called Disk Area Mechanism (DAM). Then, we
give the method for choosing the high probability radius b to
further improve the estimation accuracy.

A. Sliced Wasserstein Distance

In order to get the best SAM, we need to use the closed
form of L2

2-Wasserstein distance W 2
2 (D, D̃) to deduce the

relationship between the wave function W and W 2
2 (D, D̃).

However, except for the 2-Dim normal distribution, there
is no closed form for Wasserstein distance of 2-Dim data
distribution when the data dimension k > 1 [14], making the
distribution analysis challenging.

To solve the above issue, we use sliced Wasserstein dis-
tance [16] instead of Wasserstein distance. Sliced Wasserstein
distance is a variant of Wasserstein distance. It achieves the
measurement effect of Wasserstein distance in high-dimension
while simplifying the calculation process. The definition of
sliced Wasserstein is based on Radon Transforms [15]. We
first introduce Radon transform in Definition 6 and then give
the definition of sliced Wasserstein distance in Definition 7.
Definition 6. (Radon Transform [15]). Let L1(Rk) = {F :
Rk → R/

∫
Rk |F (x)|dx < ∞} and Sk−1 ⊂ Rk the k-

dimensional unit sphere. Let δ(·) be the one-dimensional Dirac
delta function. The standard Radon transform, defined as R,
maps a function F ∈ L1(Rk) to the infinite set of its integrals
over the hyperplane of Rk and is defined as

R(F, t, θ) =

∫
Rk

F (x)δ(t − x · θ)dx,

where (t, θ) ∈ R× Sk−1.

Definition 7. (Sliced Wasserstein Distance [16]). Let Pp(Rk)
be the space of Borel probability measures on Rk with finite

p-th moments. Given µA, µB ∈ Pp(Rk), we define the Lp
k-

sliced Wasserstein distance as

SW
p
k (µA, µB) =

∫
Sk−1

W
p
1 (R(µA, ·, θ),R(µB , ·, θ))dθ

The Radon transform maps a function F (Rk) to the infinite
set of its integrals over hyperplanes in Rk. The sliced Wasser-
stein distance in the domain Rk is defined as the integrals
of the Wasserstein distance (between two distributions trans-
formed by the Radon transform) over the unit sphere, denoted
by Sk−1, in Rk. We give an example for Radon transforms
and the sliced Wasserstein distance as follows.

Suppose the functions µA and µB are shown in Figure 3(a)
and the dimension k = 2. As for Radon transform, if we
fix θ and set t = ti, we can get the position and direction
of integration (described as line lθ,ti ). When we want to get
the Radon transform of µA, we can integrate all points in
µA ∩ lθ,ti over lθ,ti . When we fix θ and alter t from −∞
to +∞, we obtain the Radon transforms R(µA, ·, θ) for µA,
shown as the blue curve in Figure 3(a). By altering θ from 0
to 2π and t from −∞ to +∞, we can compute the L1

2-sliced
Wasserstein distance between µA and µB as SW 1

2 (µA, µB) =∫ 2π

0
W 1

1 (R(µA, ·, θ),R(µB , ·, θ))dθ.

B. Overview of DAM

According to Reference [6], we can get the optimal mech-
anism by maximizing the L2

2 Wasserstein distance between
Mv1 and Mv2 for any point pair v1 and v2. However, in the 2-
Dim case, except for 2-Dim normal distributions, obtaining the
closed-form solution of the L2

2 Wasserstein distance is difficult,
which make the optimization objective hard. To solve this
problem, we substitute the L1

2-sliced Wasserstein distance for
the L2

2-Wasserstein distance. Thus, our optimization objective
is transformed as Maximizing the L1

2 sliced Wasserstein be-
tween Mv1

and Mv2
for any different two points v1,v2 ∈ D.

Figure 3(b) shows an example of this transform with a fix θ.
Next, we describe Disk Area Mechanism in Definition 8,

and then prove that it is the best estimation among all kinds
of SAM.

Definition 8. (Disk Area Mechanism, DAM). A SAM is called
a Disk Area Mechanism if the W function satisfies:

W (z) =

{
p, if ∥z∥2 ≤ b

q, otherwise
(3)

where p = eϵ

πb2eϵ+4b+1 and q = 1
πb2eϵ+4b+1 .

DAM is also a type of SAM with W ’s value being constant
in condition (2). In order to prove DAM is optimal, we
need to get the partial derivative of the sliced Wasserstein in
our optimization objective. We give the partial derivative in
Theorem V.1 as follows.

Theorem V.1. Given an angle θ ∈ [−π
4 , 0] as the direction

angle of projection line lx′ , v1,v2 ∈ D as inputs to SAM,
where ∆ = (v2−v1)·[cos θ, sin θ]T > 0, the partial derivative
of sliced Wasserstein distance between the output distributions
of SAM with respect to θ is ∆(1− (πb2 + 4b+ 1)q).



Proof. Let u = (cos θ, sin θ). Given two different inputs
v1,v2 ∈ D, where (v2−v1)·uT = ∆ > 0. Let Mv1 and Mv2

are corresponding output distributions. We define a difference
function as DIFF (z) in Equation (4):

DIFF (z) =


0, if z · uT ≤ −b cos(θ)

1 − (πb2 + 4b + 1)q, if z · uT ≥ b cos(θ)∫∫
D′ ((W (z) − q))dz, otherwise

(4)

Let the output domain be D̃, Ỹ ′ be the projection domain of
D̃ on axis y′. Then we can write the cumulative function on
the lx′ as

P (Mv, ṽ) = h(θ, ṽ) + DIFF (ṽ − v) (5)

where h(θ, ṽ) =
∫ ṽ·uT

sin θ−b cos θ

(∫
Ỹ ′ qdy

′) dx′ . Therefore, we have

∫ (1+b) cos θ

sin θ−b cos θ

P (Mv, ṽ)dṽ =

∫ (1+b) cos θ

sin θ−b cos θ

h(θ, ṽ)dṽ

+

∫ (1+b) cos θ

sin θ−b cos θ

DIFF (ṽ − v)dṽ

= H(θ) +

∫ b cos θ

−b cos θ

DIFF (z)dz

+ (1 − (πb
2
+ 4b + 1)q)(cos θ − v · uT

)

(6)

where H(θ) =
∫ (1+b) cos θ

sin θ−b cos θ
h(θ, ṽ)dṽ. According to the defi-

nition of sliced Wasserstein distance, we have
∂SW 1

2 (Mv1
,Mv2

)

∂θ
=

∫ (1+b) cos θ

sin θ−b cos θ

|P (Mv1
, ṽ) − P (Mv2

, ṽ)|dṽ

= (1 − (πb
2
+ 4b + 1)q) · ∆

(7)

According to Equation (7), to maximize SW 1
2 (Mv1 ,Mv2),

we need to minimize q. Thus, we have Theorem V.2 as follows.

Theorem V.2. For any fixed value b and ϵ, the minimum q for
2-norm mechanism is q = 1

πb2eϵ+4b+1 . This minimum can be
achieved if and only if the mechanism is DAM.

Proof. For any point v ∈ D, let D̃v = {ṽ| ∥ ṽ − v ∥1≤ b}.
Then the area of D̃v is πb2. Therefore, we have

∫∫
D̃v

W (ṽ−
v) ≤ πb2 · eϵq. And we have

1 = (4b + 1)q +

∫∫
D̃v

W (ṽ − v)

≤ (4b + 1)q + πb
2
e
ϵ
q

= (πb
2
e
ϵ
+ 4b + 1)q.

(8)

Thus, we have q ≥ 1
πb2eϵ+4b+1 .

C. Choosing Radius b

In our DAM, a value within a distance of b from the true
value is reported with a probability that is eϵ times as large
as the one outside of b. The optimal choice of b depends on
the privacy parameter ϵ.

Intuitively, as ϵ approaches infinity, b needs to approach 0
to fully recover the input distribution. Additionally, when the
probability density of the private distribution is concentrated
at one point, a smaller b is suitable, whereas when the
probability has a more evenly distributed density, a larger b
is appropriate. However, we do not know the distribution of
the private points. There is a silver lining that we can choose a
b value independent of the distribution while still performing

reasonably well over different distributions. Similar to the case
of one dimension [6], we choose b by maximizing the upper
bound of mutual information between the input and output of
our DAM in the 2-Dim case.
Unit Side Length Input. We consider the case where the
input domain is a unit square. Let V and Ṽ be the random
variables representing the input and output in our DAM. We
can express the mutual information as the difference between
the differential entropy of Ṽ and the conditional differential
entropy of V and Ṽ :

I(V , Ṽ ) = h(Ṽ ) − h(Ṽ |V ).

h(Ṽ ) is maximized when Ṽ is uniformly distributed on D̃.
For DAM, we have

I(V , Ṽ ) ≤ h(Ũ) − h(Ṽ |V )

= log (πb
2
+ 4b + 1) + (πb

2
p log p + (4b + 1)q log q)

= log (
πb2 + 4b + 1

πb2eϵ + 4b + 1
) + ϵ log e −

(4b + 1)ϵ log e

πb2eϵ + 4b + 1
.

(9)

We denote the expression on the right side in Equation (9) as
g(b). Then we have:

dg(b)

db
=

2πb(2b + 1)(−πeϵm1b
2 + 4m2b + m2)

(πb2 + 4b + 1)(πb2eϵ + 4b + 1)2 ln 2
(10)

where m1 = eϵ−1−ϵ and m2 = 1−eϵ+ϵeϵ. Because ϵ and b

are both positive, when b =
2m2+

√
4m2

2+πeϵm1m2

πeϵm1
, it achieves

maximum. We can see that when ϵ → 0, b → 2+
√
4+π
π , and

when ϵ→ +∞, b→ 0.
General Side Length Input. When the input domain is a
square with length L, the mutual information of Ṽ and V
can be express as follow:

I(V , Ṽ ) ≤ log (πb
2
+ 4Lb + L

2
) + (πb

2
p log p + (4Lb + L

2
)q log q)

= log (
πb2 + 4Lb + L2

πb2eϵ + 4Lb + L2
) +

πb2eϵϵ log e

πb2eϵ + 4Lb + L2
.

(11)
And we have

dg(b)

db
=

2πLb(2b + L)(−πeϵm1b
2 + 4dm2b + L2m2)

(πb2 + 4Lb + L2)(πb2eϵ + 4Lb + L2)2 ln 2
. (12)

Let m1 = eϵ − 1 − ϵ and m2 = 1 − eϵ + ϵeϵ. Let dg(b)
db = 0,

we can get the best b = 2m2+
√

4m2
2+πeϵm1m2

πeϵm1
· L.

VI. BUCKETIZING AND POST-PROCESSING

When we use any SAM (e.g., HUEM or DAM) in real-world
scenarios, it is impossible to count the frequency of all types
of points because there is infinite number of points in any
continuity ranges (e.g., D and D̃). Thus we need to bucketize
the input/output domain into grids and execute SAM under
grid domain. Additionally, we provide the method of post-
processing under the grid condition. Finally, we give the total
algorithms of solving PSDEP.

A. Bucketizing

To facilitate the reconstruction of the distribution, we need
to divide the plane into grids and use our DAM on this grid
plane. In other words, the problem is converted into estimating
the histogram distribution on a 2-Dim plane using DAM.

Let g be the length of a grid cell. Let G be the grid input
domain and G̃ be the grid output domain. We denote the side



(a) Non-shrunken areas (b) Shrunken areas
Fig. 4: Non-shrunken/Shrunken areas in grid division.

length of the grid as d = ⌊Lg ⌋ and the high probability radius
in the grid as b̂ = ⌊ bg ⌋. Then, the coordinate unit is reset to
the side length of a grid cell, and we use the central point of
a cell to represent its position. For example, in Figure 4(a),
the index of the cell a0 is (0, 0), and the index of the cell to
the right of a0 is (1, 0).

Our DAM for grids is defined in Equation (13).

∀v ∈ G, ṽ ∈ G̃,Mv(ṽ) =

{
p̂, if ∥ṽ − v∥2 ≤ b̂,

q̂, otherwise.
(13)

Next, we decide how to calculate p̂ and q̂ to approximate
the true values.

As is shown in Figure 4, given an input cell a0 (the red
rectangle), the blue dotted line (denoted as Bp) represents the
border of high probability reporting. Based on the positional
ordinal relationship between Bp and the output cells, the
output domain can be divided into three areas:
(1) the pure high probability area Ap where the center of

each cell is in or on Bp;
(2) the pure low probability area Aq where each cell neither

intersects with Bp nor locates in Bp;
(3) the mixed probability area Am where each cell intersects

with Bp, however, the center point is out of Bp.
All these areas are shown as the orange cells, the white
cells and shaded cells, respectively. Each cell a(i) in Am

can be further divided into high probability part a
(i)
p and

low probability part a
(i)
p , respectively. We combine all high

probability areas (Am,p =
∑

i a
(i)
p ) in Am with Ap to form

the total high probability area AH . Similarly, we combine all
low probability areas (Am,q =

∑
i a

(i)
q ) in Am with Aq to

form the total low probability area AL.
We consider the area size of each cell to be 1 (i.e., Sa = 1).

To determine p̂ and q̂, we need to solve two problems:

(1) How can we determine the area size of a(i)p for each cell
in Am to satisfy ϵ-LDP ?

(2) What is the area size of AH and AL ?
To solve Problem (1), we first determine the center of a

(i)
p

(denoted as CN ) by intersecting Bp and the line between
a(i)’s center and Bp’s center. Then, we construct a

(i)
p as a

rectangle centered at CN satisfying a
(i)
p ’s left and bottom

borders overlap a
(i)
p ’s left and bottom borders respectively. To

solve Problem (2), we first partition AH and AL into several

Fig. 5: The process of border shrinkage in discrete DAM.

parts and reconstruct them as different types of cells. Then, we
count these cell areas by category. We introduce these methods
in detail below.

As for the Problem (1), we determine whether the center
o(i) of each cell a(i) ∈ Am is inside Bp. If o(i) is outside of
Bp, we create a new shrunken rectangle for a(i) and set it as
a
(i)
p while the remain part a(i) \a(i)p is set as a

(i)
q . The method

for constructing the new shrunken rectangle is as follows.
Suppose Bp crosses a grid cell a (with its central point

noted as C) as shown in Figure 5, with the blue dot arc ARC
indicating the intersection. We connect the center of Bp and
the point C to obtain the intersection point CN on ARC. We
define CN as the center of the shrunken rectangle a

(i)
p , and

construct a(i)p as shown in the green shaded part.
Next we give Theorem VI.1 to calculate the area size of the

shrunken rectangle a
(i)
p .

Theorem VI.1. Given a circle Bp with central cell index
(0, 0), a radius b̂ and any cell a, the area size of a’s shrunken
cell ap is Sap = 4(δ ·x+ 1

2 )(δ ·y+
1
2 ), where δ = b̂√

x2+y2
−1,

and a is any cell that intersects with Bp, whose central point
(x, y) is outside the range of Bp.

Proof. As shown in Figure 5, suppose the index of cell a is
(x, y), then the index of ap is (b̂ · x√

x2+y2
, b̂ · y√

x2+y2
). The

line of a’s left boundary is X = x − 1
2 and the line of a’s

bottom boundary is Y = y − 1
2 . Thus, Sap

= 4(b̂ · x√
x2+y2

−

(x− 1
2 ))(b̂ ·

y√
x2+y2

− (y − 1
2 )). Let δ = b̂√

x2+y2
− 1. Then

we have Sap
= 4(δ · x+ 1

2 )(δ · y +
1
2 ).

As for the problem (2), we decompose AH = Ap + Am,p

and AL = Aq + Am,q . We need to calculate the area size
of Aq , Ap and Am (i.e., Am,p + Am,q). Next, we give
Theorem VI.2, VI.3 and VI.4 to calculate the sizes of these
three areas.

Theorem VI.2. For any square input domain D with integer
side length d and any integer high probability radius b̂, the
area size of pure low probability area Aq is d2+4b̂d−4b̂−1.

Proof. Please refer to details of Theorem VI.2 in Appendix B1
in our technical report [27].

Theorem VI.2 gives the method to calculate the area size of
Aq . As for Ap and Am, according to the centripetal symmetry
and axial symmetry of a circle, we only need to analyze the
part within angle [0, π

4 ]. Figure 6 shows the conditions that b̂
is 1, 2, ..., 7. The cells in directions of 0 and π

4 are in yellow
while others are in green.



Fig. 6: Quarter of the total area.

We define Eb̂,θ as the cells in direction θ within the radial
range of b̂. We define Eb̂,(θ1,θ2)

as the cells within the radial
range of b̂ and the direction range of (θ1, θ2). We define strict
quarter Am (denoted as E

(m)

b̂,(0,π4 )
) as the cells belonging to

Am in Eb̂,(0,π4 ), and strict quarter Ap (denoted as E
(p)

b̂,(0,π4 )
)

as the cells belonging to Ap in Eb̂,(0,π4 ). Similar to Am, the
strict quarter Am can be divided into the high probability
part and low probability part. We call these two parts as
strict quarter Am,p and and strict quarter Am,q respectively.
For example, in Figure 6, E7̂,π4

= {a0} ∪ {Di|i ∈ [5]},
E

(m)
7,(0,π4 ) = {A1, A2, A3, A4}, the quantity of E

(p)
7,(0,π4 ) is

|E(p)
7,(0,π4 )| = |{Bi|i ∈ [13]}| = 13.
In order to get the area size of strict quarter Am (i.e.,

strict quarter Am,p and strict quarter Am,q), we need to know
each cell’s index in E

(m)

b̂,(0,π4 )
. Based on these cell indexes and

Theorem VI.1, we can calculate each cell’s shrunken area size
and remaining area size in E

(m)

b̂,(0,π4 )
(i.e., strict quarter Am,p

and strict quarter Am,q). We present Theorems VI.3 to get the
cell indexes in E

(m)

b̂,(0,π4 )
as follows.

Theorem VI.3. Given a positive integer b̂, the quantity of

E
(m)

b̂,(0, π
4

)
is ⌈ b̂√

2
− 1

2⌉ − ⌊
r
b̂
⌋, where r =

√
r21 + 1 +

√
2r1 and

r1 = ⌊ b̂√
2
− 1

2⌋ ·
√
2 + 1√

2
. The index of each cell in Em

b̂,(0,π4 )

is (⌈
√

b̂2 − (i− 1
2 )

2 − 1
2⌉, i) for i ∈ [|E(m)

b̂,(0,π4 )
|].

Proof. Please refer to details of Theorem VI.3 in Appendix B2
in our technical report [27].

In order to get the area size of strict quarter Ap, we need
to count the cell number in this area. Theorem VI.4 gives the
method to calculate this count.

Theorem VI.4. Given a positive integer b̂, the quan-
tity of E

(p)

b̂,(0,π4 )
is 1

2 ⌈
b̂√
2

− 1
2 ⌉(⌈

b̂√
2

− 1
2 ⌉ − 2|E(m)

b̂,(0, π
4

)
| − 1) +

∑|E(m)

b̂,(0, π
4

)
|

i=1 ⌈
√

b̂2 − (i − 1
2 )

2 − 1
2 ⌉.

Proof. Please refer to details of Theorem VI.4 in Appendix B3
in our technical report [27].

According to Theorems VI.1, VI.3, and VI.4, we can
calculate p̂2 and q̂2 as follows.

Algorithm 1: DAM Processing Framework
Input: original data point set X , square range L× L,

cell side length g, privacy budget ϵ
Output: distribution map R

1 Split square range into ⌈Lg ×
L
g ⌉ grids with index set

I = [0 : ⌈Lg ⌉ − 1]× [0 : ⌈Lg ⌉ − 1];
2 Calculate the noisy domain index set Î;
3 Initialize noisy map NR by setting items as (̂i, 0) for

each î ∈ Î;
4 for each point x in X do
5 Get the grid index I(x);
6 Îx ← GridAreaResponse(I(x));
7 NM(I(x))← NM(I(x)) + 1;

8 R← PostProcess(NR, I);
9 return R;

Let S
(m,p)
a be the shrunken area size of a ∈ E

(m)

b̂,(0,π4 )
,

which can be calculated by Theorem VI.1. Similarly, let S(m,p)
π
4

denote the shrunken area size of cell a ∈ E
π
4

b̂
∩Am. According

to Theorem VI.1, we have

S
(m,p)
π
4

=

{
4(b′π

4
− b̂π

4
)2, if b′π

4
− b̂π

4
< 1

2 ,

1, otherwise
(14)

where b′π
4

= b̂√
2
− 1

2 and b̂π
4

= ⌊b′π
4
⌋.

Finally, we can calculate the probabilities p̂ and q̂ as:

p̂ =
eϵ

SH · eϵ + SL

, q̂2 =
1

SH · eϵ + SL

,

where SH = 1+4(b̂+ b̂π
4
+S

(m,p)
π
4

)+8(|E(p)

b̂,(0, π
4

)
|+

∑
a∈E

(m)

b̂,(0, π
4

)

S(m,p)
a )

and AL = Aq + 4(1 − S
(m,p)
π
4

) + 8
∑

a∈E
(m)

b̂,(0, π
4

)

(1 − S(m,p)
a ).

Regarding the discretization of HUEM, the high probability
areas can be divided into b̂ fan rings {FRj}b̂j=1. For any unit

cell in FRj , the reported probability is p
(I)
j = qe1−

j−1

b̂ . For
a unit cell a on the border of FRj−1 and FRj , the reported
probability is p

(B)
j = S

(p)
a · p(I)j−1 + (1 − S

(p)
a ) · p(I)j , where

S
(p)
a is the shrunken area size of a. For more details on

discretization of HUEM, please refer to Appendix A in our
technical report [27].

B. The PSDEP Processing Algorithm

We give the processing framework for our DAM shown in
Algorithm 1. The input square range with an area size of L×L
will be divided into grids. For each point in this area, we first
project it onto a grid cell (Line 5), and then randomize the cell
into a random noisy cell (Line 6) using GridAreaResponse. All
the points in each noisy cell will be counted and stored in the
noisy map NM . Finally, we obtain the distribution estimation
using PostProcess.

In Algorithm 1, the GridAreaResponse process is to pick
a randomized cell index satisfying ϵ-LDP. The PostProcess
process is to handle the values to obtain an accurate estimation
distribution, which is the Expectation-Maximization (EM) [6]



Algorithm 2: GridAreaResponse
Input: original grid index i
Output: noisy grid index î

1 Find the pure high probability cell index set Îp(i) and
calculate its total area size Sp;

2 Find the pure low probability cell index set Îq(i) and
calculate its area size Sq;

3 Find the high probability border cell set Îm(i) and
calculate the sum shrunken area
Sm,p =

∑
î∈Îm

Sm,p(̂i) and the complement area
Sm,p =

∑
î∈Îm

Sm,p(̂i);
4 Set value list vl =< APL, Sm,p, Sm,p, APH >;
5 Set weighted list wl =< 1, 1, eϵ, eϵ >;
6 Sample ind as i with probability as pi =

vli·wli∑4
j=1 vlj ·wlj

;

7 if ind = 1 then
8 î

$←− Îq(i);
9 else if ind = 4 then

10 î
$←− Îp(i);

11 else
12 Set vl =< ws1, ..., wsn > for each

wsj = saj + saj · eϵ;
13 Set wl =< 1, ..., 1 > with n elements;
14 Sample ind as i with probability as

pi =
vli·wli∑4

j=1 vlj ·wlj
;

15 î← cell with ind in vl;

16 return î;

Algorithm. Next, we give the processes of GridAreaResponse
in Algorithm 2.

In GridAreaResponse, a cell point in range b will have a
higher probability of being responded to while those outside
of it will have a lower probability. Specifically, the areas are
divided into three parts: the pure low probability area, the
mixed probability area, and the pure high probability area.
Given an original grid index i, the algorithm calculates the
area size of high probability part Îp(i), the low probability
part Îq(i) and the mixed probability area Îm(i). The cells that
are crossed by the circle centered at cell (0, 0) with radius b
make up Îm(i). All the cells in the mixed probability area
need to be further divided into two parts: the shrunken part
and the remain part. Therefore, there are four parts of the
area that can be chosen as a candidate sample domain. The
algorithm uses a weighted sample (Line 6) to determine which
part to choose. The value ind = 1 refers to the choice of
the low probability part, and ind = 4 refers to the choice
of the high probability part. Both of these two cases use the
uniform sample to choose î (Line 8 and Line 10). When it
comes to the case of border area containing n cells, rather than
using the uniform sample, the sampling probability needs to
be proportional to the weighted area size wsj for each cell in
the mixed probability area (Line 12). After that, the weighted
sampling algorithm is used with identical weight for each cell

TABLE III: The range and data points of Data sets.
Chicago Crimes NYC Green Taxies

Range Point size Range Point size

Part A [41.72◦,41,81◦]
×[-87.68◦,-87.59◦] 216,595 [40.65◦, 40.75◦]

×[-73.84◦, -73.74◦] 10,561

Part B [41.82◦,41.91◦]
×[-87.73◦,-87.64◦] 173,552 [40.65◦,40.74◦]

×[-73.95◦,-73.86◦] 42,195

Part C [41.92◦,41.99◦]
×[-87.77◦,-87.70◦] 69,068 [40.82◦,40.89◦]

×[-73.90◦,-73.83◦] 9,186

TABLE IV: Experimental Settings.
Parameters Values

the norm distance, b ⌊0.33b̌⌋, ⌊0.67b̌⌋, b̌, ⌊1.33b̌⌋, ⌊1.67b̌⌋
the discrete side length, d 1, 2, 3, 4, 5, 10, 15, 20
the privacy budget, ϵ 0.7, 1.4, 2.1, 2.8, 3.5, 5, 6, 7, 8, 9

to sample the result response cell (Line 14).
Time and Memory Complexity Analysis. Let n be the number

of users. Let g be the grid number of the input domain. The
time complexity of GridAreaResponse algorithms is O(g). Let
m be the repeat times before converging in PostProcess algo-
rithm. The time complexity of PostProcess is O(nk). There-
fore, the time complexity of DAM Processing Framework is
O(ng + nk). The memory complexity of GridAreaResponse
and PostProcess algorithms are O(g). Therefore, the memory
complexity of DAM Processing Framework is O(g).

VII. EXPERIMENTAL EVALUATION

In this section, we compare the accuracy of our mechanisms
with state-of-the-art methods across various parameters. Our
experiments aim to determine which method achieves the
smallest Wasserstein distances between the real and recov-
ered obfuscated density distributions under equivalent privacy
levels or grid sizes.

A. Experimental Setup

Data sets. We demonstrate all above mechanisms on the
following 5 data sets. The first two data sets are real, and
the other three ones are synthetic.

Chicago Crime [28] (Crime): It is collected to monitor
crime events in Chicago from January 1st to June 30th, 2022.
It contains 105,453 data items, each representing a crime
event. We extract events with a latitude range [40◦, 42◦] and
a longitude range [−87.9◦,−87.54◦]. Finally, we get 101, 146
items.

NYC Green Taxis [29] (NYC): It records green taxi order
information in New York City in 2016. It contains 448, 181
order items. We only extract orders with a pickup location
latitude and longitude within the ranges of [40.55◦, 40.88◦]
and [−74.05◦,−73.73◦], respectively. Finally, we get 446, 110
items.

The latitude and longitude of Chicago crime event locations
and NYC green taxi pick-up locations are shown in Figure 7(a)
and 7(b). We project the latitude and longitude onto a plane,
which does not affect our experimental results.

To address the irregularity of these positions, we further
extract three parts (marked as squares in Figure 7(a) and 7(b))
of the two real data sets and estimate the distributions within
each part. Table III shows the number of data points in each
area for Chicago Crimes and NYC Green Taxis. For the
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Fig. 7: Data sets.

experiment on the full domain of the real data sets, please
refer to Appendix C in our technical report [27].

Normal(0, 0, 1, 1, 0.5) (Normal): We generate 300, 000 2-
Dim data points in the plane, where each point follows a 2-
Dim Gaussian distribution with µx = µy = 0, σ2

x = σ2
y = 1,

and ρ = 0.5. The correlation between x and y is described
by ρ ∈ (−1, 1), where −1 < ρ < 0 indicates negative
correlation, 0 < ρ < 1 indicates positive correlation, and
ρ = 0 indicates independence between x and y. The points
are all within the range (−5, 5)× (−5, 5). The range of these
points is [−4.44, 4.65]× [−4.87, 4.58].

Skew Zipf( 1
ln 2 , 1,1) (SZipf): We generate 100,000 2-Dim

data points in the plane. Each dimension of each point follows
a skew Zipf distribution with a CDF of 1/ ln 2

X+1 . The points are
limited to the range [0, 1)× [0, 1). We show one-tenth of the
point distribution in Figure 7(d).

Multi-center Normal (MNormal): We generate 300, 000 2-
Dim data points in the plane. These points can be divided into
three parts, each containing 100, 000 points. The parts follow
a normal distribution with parameters Normal(0, 0, 1, 1, 0.5),
Normal(0, 0, 1, 1, 0), and Normal(0, 0, 1, 1, -0.2), respectively.
The range of these points is [−4.25, 6.18]× [−4.32, 6.44].
Parameter Settings. We vary the norm distance b from 0.33b̌
to 1.67b̌, where b̌ is the best choice of b. We define the discrete
side length d as L/g, where L is the side length of the input
data set area, g is the side length of a grid cell. We change
d from 1 to 20 and ϵ from 0.7 to 9. The parameter settings
are shown in Table IV with default values marked as bold or
underlined.

We conduct our experiment in Java on an Intel(R) Xeon(R)
Silver 4210R CPU @ 2.4GHz with 128 GB RAM. We run
our experiment 10 times and use the average result as our
final result.

B. Mechanisms and Measures
We compare our mechanisms HUEM and DAM with Multi-

dimensional Square Wave Mechanism (MDSW) [10] and
Subset Exponential Mechanism with Geo-I (SEM-Geo-I) [12].
We also compare our DAM with its version without shrinkage
(i.e., Disk Area Mechanism with Non-Shrink, DAM-NS). Fur-
thermore, we evaluate our mechanism against recent research

on private trajectory estimation: Locally Differentially Private
Trajectory Synthesis (LDPTrace) [30] and Trajecotry Data
Collectin with Local Differential Privacy (PivotTrace) [31].
For detailed comparisons with the trajectory mechanisms,
please refer to Appendix D in our technical report [27].

Actually, it is hard to make DAM and SEM-Geo-I com-
parable because DAM and SEM-Geo-I are based on different
privacy definition (DAM is based on LDP while SEM-Geo-I
is based on Geo-I). However, the definitions of both LDP and
Geo-I are based on privacy loss [1] which is a more funda-
mental privacy definition. Thus, given the same input domain,
we can set the same privacy loss in DAM and SEM-Geo-I and
compare the utilities between these two mechanisms.

Givena a fixed privacy budget ϵ, DAM achieves ϵ-LDP
which means for any v ∈ D, the privacy loss of randomizing v
to ṽ ∈ D̃ is ϵ. However, SEM-Geo-I achieves ϵ-Geo-I which
means for any v ∈ D, the privacy loss of randomizing v
to ṽ ∈ D̃ is ϵ · dis(v, ṽ) where dis(v, ṽ) is the Euclidean
distance between v and ṽ (i.e., dis(v, ṽ) = ∥v − ṽ∥2). We
find if dis(v, ṽ) < 1, SEM-Geo-I provides higher level privacy
protection than DAM, if dis(v, ṽ) > 1, DAM provides higher
level privacy protection than SEM-Geo-I.

Next, we introduce the definition of an enhanced loss
privacy called Local Privacy (LP) [17] to make DAM and
SEM-Geo-I comparable on both utility and privacy. Let I be
the input domain, and T be the output domain. Let Î be the
inferred domain of I. Based on the unbiased results of DAM
and SEM-Geo-I, we have Î = I. Thus, the local privacy is
defined as:

LP =
∑
i′∈T

LPI(i
′
) =

∑
i,̂i∈I

LPT (i, î)

=
∑

i,̂i∈I,i′∈T

Pr(i) Pr(i
′|i) Pr(̂i|i′)dp (̂i, i)

(15)

In Equation (15), Pr(i) is the probability of being at location
i when accessing the location-based service. Pr(i′|i) is the
location obfuscation function implemented by privacy mecha-
nisms, which is defined as the probability of replacing i with
i′. Pr(̂i|i′) is the adversary attack function, which is defined
as the probability of estimating î as the user’s actual location
if i′ is observed. dp(̂i, i) is the privacy of the user at location
i, given that the adversary’s estimation is î. This is defined as
the distance between î and i, using 2-norm distance.

Suppose the truthful points obey a uniform distribution.
Then, we have Pr(i) = 1

n , where n is the number of truthful
locations. According to the unbiased estimation for LDP, we
have Pr(̂i) = Pr(i) = 1

n and Pr(i′|i) = Pr(i′ |̂i) when i = î.
Therefore, for DAM and SEM-Geo-I, we have:

LPI(i
′
) =

1

n

∑
i,̂i∈I

Pr(i
′|i) Pr(̂i|i′)dp (̂i, i)

=
1

n

∑
i,̂i∈I

Pr(i′|i) · Pr(i′ |̂i) Pr(̂i) · dp (̂i, i)∑
îj∈I Pr(i′ |̂ij) Pr(̂ij)

=
1

n

∑
i,̂i∈I

Pr(i′|i) Pr(i′ |̂i)dp (̂i, i)∑
îj∈I Pr(i′ |̂ij)

=
1

n
∑

îj∈I Pr(i′ |̂ij)

∑
i,̂i∈I

Pr(i
′|i) Pr(i

′ |̂i)dp (̂i, i)

(16)
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Fig. 8: Wasserstein distances with b varied.

To calculate the value of LP for DAM, traverse all i′ ∈ I ′,
where I ′ is the output domain of DAM. For SEM-Geo-I,
calculate the value of LP by traversing all i′ ∈ Sk, where Sk is
the k-subset domain of I. In our experiment, we set ϵ in DAM
as the values in Table IV and calculate the corresponding ϵ′

in SEM-Geo-I with their local privacy equal. We compare the
accuracy of the mechanisms above, described by the 2-Dim
Wasserstein distance. Since there is no closed-form solution
for high-dimensional Wasserstein distance [14], we calculate
the 2-Dim Wasserstein distance using Linear Programming.

Note that in our models, all distributions are finite and the
input and output domains are divided into grids. Therefore,
in our models, the Wasserstein distance involves multidimen-
sional optimization in finite spaces. We can formalize this as
follows:

Suppose D = {X1, ..., Xm} and D̃ = {Y1, ..., Yn}. Let
M = {∥Xi − Yj∥pp}i∈[m],j∈[n] be the matrix where each
element is the p norm to the p for the pair of X and Y .
Let R = {Pr[Xi, Yj ]}i∈[m],j∈[n] be the matrix where each
element is the joint probability of Xi and Yj . Then,

W
p
2 (D, D̃) = min ∥M

⊙
R∥F

s.t. sumr(R) = Pr[D]

sumc(R) = Pr[D̃]

Ri,j ≥ 0; ∀i ∈ [m] and j ∈ [n]

(17)

where
⊙

is Hadmard production, ∥ · ∥F is Frobenius norm.

C. Experimental Results

We compared the estimation results of methods for distri-
bution estimation. We used the 2-norm Wasserstein distance
W2 =

√
W 2

2 between the recovered and actual density
distributions in a discrete situation. We compared the results
on different data sets with varying values for the norm distance
b, discrete side length d, and privacy budget ϵ. For the divided
data sets (Chicago Crime and NYC Green Taxis), we used the
mean value of each part’s W2 as the estimation results.

1) Norm Distance b: Figure 8 shows the impact of the norm
distance b on W2. The value of b varies from 0.33b̌ to 1.66b̌,
where b̌ is the optimal value of b in a discrete situation. We set
the default discrete side length d = 15 and the default privacy
budget ϵ = 3.5. In this case, the optimal norm distance b̌ is
approximately equal to 3. We can see that, in both the real
and synthetic data sets, W2 first decreases and then increases.
When b is approximately equal to b̌, W2 achieves its minimum
value, which is consistent with our analysis in section V-C.

However, W2 is not minimal when b = b̌ in some data sets
due to the error from grid division.

2) Discrete side length d: As the grid cells’ side length
g decreases, d increases with fixed L. Here we vary d from
1 to 5. As shown in Figure 9(a) to 9(e), W2 increases with
the increase of d in most mechanisms except for MDSW on
data set SZipf. This is because, as d increases, the number of
grid cells becomes larger, and the gap between the recovered
and actual density distributions widens. HUEM is better than
MDSW in most cases and DAM is always better than MDSW.
It is because HUEM and DAM retain the ordinal relationship
of x-coordinate, y-coordinate and (x, y)-union among all
points, however, MDSW only retains ordinal relationship of
x-coordinate and y-coordinate. On the other hand, it indicates
that considering the relationship between each dimension is
useful. Additionally, our DAM is superior to HUEM, which
demonstrates its effectiveness in 2-Dim area mechanisms.
Moreover, DAM outperforms DAM-NS in real data sets. This
is because both data sets are road network data sets where the
shrunken method has more advantages over the non-shrunken
method.

The difference between SEM-Geo-I and our DAM is small.
That is because when d is small, the side length of a grid cell
is large, and the shape of discrete DAM is very different from
that of continue DAM. This makes the discrete DAM performs
worse than SEM-Geo-I. We further compare these two mecha-
nism under larger d. However, as d becomes larger, it becomes
more difficult to calculate the Wasserstein distance within an
acceptable time. Therefore, we use Sinkhorn’s algorithm [32]
to approximately calculate the Wasserstein distance. We vary
d from 1 to 20 and set ϵ as 5 to further compare SEM-Geo-I
and our DAM from Figure 9(f) to Figure 9(j). We can see,
as d increases, the Wasserstein distances of both SEM-Geo-I
and DAM also increase. Our DAM is better than SEM-Geo-
I when d is larger. This occurs because as d increases, the
discrete DAM gradually approaches to the continuous DAM
in shape, and its error from grid diminishes. Consequently, the
advantages of DAM become increasingly apparent.

3) Privacy Budget ϵ: The privacy budget ϵ not only affects
the reported probability, but also influences the norm distance
b. Figures 9(k) to 9(o) show how the value of W2 changes with
the change in ϵ. As ϵ increases, W2 decreases slightly. This
is because a large ϵ leads to a high probability report of the
real data set, which makes the recovered density closed to the
actual one. Our solution, DAM, is always better than MDSW.
As ϵ increases, DAM achieves better estimation than HUEM.
In addition, SEM-Geo-I slightly outperforms our DAM when
ϵ is small. That occurs because a small ϵ causes the high
probability domain to cover the input domain, making the
differences between input cells less distinguishable. This will
diminishes DAM’s advantage. For SEM-Geo-I, as ϵ decreases,
its output domain space complexity grows by nk = O(nn/eϵ)
(n = d2), exceeding our experiments’ tolerance range for large
d. To keep SEM-Geo-I feasible, we must set d to a small
value when ϵ is small. However, a small d further distorts the
shape of discrete DAM (see the Discrete side length d analysis
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Fig. 9: Wasserstein distances with d or ϵ varied.

in Subsection VII-C2), leading to its poor performance. We
further compare our DAM to SEM-Geo-I under larger ϵ by
Sinkhorn’s algorithm [32] in Figure 9(p) to 9(t). We set the d
as 15 and vary ϵ from 5 to 9. In both DAM and SEM-Geo-I,
W2 decreases as ϵ increases. As ϵ becomes larger, W2 of the
two mechanisms approach 0, because a larger ϵ leads to higher
accuracy for private distribution estimation. DAM outperforms
SEM-Geo-I when ϵ is large.

VIII. CONCLUSION

In this paper, we study Private Spatial Distribution Es-
timation Problem. We propose a general framework called
Spatial Area Mechanism (SAM) and a simple mechanism
called Hybrid Uniform-Exponential Mechanism (HUEM). We
further propose the optimal solution DAM among all SAM,
leveraging the ordinal relationship between each data point
to improve the accuracy of private distribution estimation.
Besides, we propose a shrinkage method to improve the
estimation accuracy in the grid circumstance. What’s more,
we compare our DAM with the state-of-the-art mechanisms to
demonstrate that DAM can achieve the minimum Wasserstein
distance among all mechanisms.
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Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 261–272.

[17] R. Shokri, G. Theodorakopoulos, C. Troncoso, J. Hubaux, and J. L.
Boudec, “Protecting location privacy: optimal strategy against localiza-
tion attacks,” in the ACM Conference on Computer and Communications

Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, T. Yu,
G. Danezis, and V. D. Gligor, Eds. ACM, 2012, pp. 617–627.

[18] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially private
location protection for worker datasets in spatial crowdsourcing,” IEEE
Trans. Mob. Comput., vol. 16, no. 4, pp. 934–949, 2017.

[19] X. Gu, M. Li, L. Xiong, and Y. Cao, “Providing input-discriminative
protection for local differential privacy,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April
20-24, 2020. IEEE, 2020, pp. 505–516.

[20] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: differential privacy for location-based sys-
tems,” in 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
A. Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM, 2013, pp. 901–914.

[21] G. Cormode, C. M. Procopiuc, D. Srivastava, E. Shen, and T. Yu, “Dif-
ferentially private spatial decompositions,” in IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V.
Salles, Eds. IEEE Computer Society, 2012, pp. 20–31.

[22] W. H. Qardaji, W. Yang, and N. Li, “Priview: practical differentially
private release of marginal contingency tables,” in International Con-
ference on Management of Data, SIGMOD 2014, Snowbird, UT, USA,
June 22-27, 2014, C. E. Dyreson, F. Li, and M. T. Özsu, Eds. ACM,
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[26] T. Wang, M. Lopuhaä-Zwakenberg, Z. Li, B. Skoric, and N. Li, “Locally
differentially private frequency estimation with consistency,” in 27th
Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020.

[27] L. Du, P. Cheng, L. Zheng, X. Lian, L. Chen, W. Xi, and W. Ni,
“Numerical estimation of spatial distributions under differential privacy,”
arXiv preprint arXiv:2412.06541, 2024.

[28] “[online] Chicago Crimes 2022,” https://data.cityofchicago.org/
Public-Safety/Crimes-2022/9hwr-2zxp, 2024.

[29] “[online] NYC Green Taxi Trip 2016,” https://data.cityofnewyork.us/
Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb, 2024.

[30] Y. Du, Y. Hu, Z. Zhang, Z. Fang, L. Chen, B. Zheng, and Y. Gao,
“Ldptrace: Locally differentially private trajectory synthesis,” Proc.
VLDB Endow., vol. 16, no. 8, pp. 1897–1909, 2023.

[31] Y. Zhang, Q. Ye, R. Chen, H. Hu, and Q. Han, “Trajectory data collection
with local differential privacy,” Proc. VLDB Endow., vol. 16, no. 10, pp.
2591–2604, 2023.

[32] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” in Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, C. J. C. Burges, L. Bottou, Z. Ghahramani, and
K. Q. Weinberger, Eds., 2013, pp. 2292–2300.

https://data.cityofchicago.org/Public-Safety/Crimes-2022/9hwr-2zxp
https://data.cityofchicago.org/Public-Safety/Crimes-2022/9hwr-2zxp
https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb
https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb

	Introduction
	Related Work
	Problem definition
	Basic Notations and Preliminaries
	Distance Metrics
	PSDEP Definition

	The Hybrid Uniform-Exponential Mechanism
	The Disk Area Mechanism
	Sliced Wasserstein Distance
	Overview of DAM
	Choosing Radius b

	Bucketizing and Post-processing
	Bucketizing
	The PSDEP Processing Algorithm

	Experimental Evaluation
	Experimental Setup
	Mechanisms and Measures
	Experimental Results
	Norm Distance b
	Discrete side length d
	Privacy Budget 


	Conclusion
	References

