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Abstract. With the development of cloud computing, spatial crowd-
sourcing (SC) has become a significant concern in data processing,
including food delivery and online car-hailing. However, privacy leak-
age presents a challenge for requesters who need to share their task
information with the server. Differential privacy (DP) is a robust pri-
vacy protection paradigm that allows the release of useful information
while safeguarding requesters’ privacy. However, task assignment under
DP often results in ineffective utility. In this paper, we propose a sta-
ble task assignment scheme that enables requesters to apply for workers
and achieve effective stable matching while preserving the privacy of the
requests (tasks). Specifically, we introduce an approach called ECM that
achieves stable matching while protecting the preference of requesters.
We demonstrate the efficiency and effectiveness of our ECM on synthetic
and real datasets.

1 Introduction

With the increasing popularity of cloud computing, spatial crowdsourcing has
emerged as a computing paradigm for solving spatial tasks that involve human
participation. To access content services, individuals are required to provide
certain personal information to the server. This enables the server to efficiently
execute task computing based on the provided information.

However, the location information of users may be sensitive and can com-
promise their privacy. To address this issue, differential privacy [4] can be used
to protect individual data while still ensuring accurate statistical results for the
entire data set.

Most schemes [13,14] disturb task positions under different privacy levels and
then send the noisy data to the server. The server has to match tasks and workers
using the disturbed data, which increases the error in the matching result. In
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this paper, we propose a new model where tasks compete for workers based on
their knowledge of workers’ information. In this model, the location of tasks is
not made public to others. The tasks compete for workers while using differential
privacy counters.

In this paper, we study the problem of spatial crowdsourcing, specifically the
Private Stable Task Assignment Problem (PSTAP). In this context, tasks can
be assigned to workers based on their proximity without revealing the tasks’
locations. We assume that the workers’ information is publicly available, the
server is honest but curious, and the tasks are rational. To address this prob-
lem, we propose a private stable matching scheme called Enhanced Concentric
Mechanism (ECM). This scheme divides the plane into multiple areas centered
around each worker and transforms distances into preferences. It leverages the
binary mechanism [2] and extends the Private Gale-Shapley Mechanism [15] to
achieve a stable matching between tasks and workers. ECM ensures the privacy
of workers’ preferences under joint differential privacy. The contributions of this
paper are as follows:

(1) We formally define the Private Stable Task Assignment Problem (PSTAP) in
Section 3.

(2) We propose the Enhanced Concentric Mechanism (ECM) in Section 4 to solve
PSTAP.

(3) We evaluate the efficiency and effectiveness of ECM on synthetic and real
datasets in Section 5.

2 Related Work

We introduce the related work on stable allocation and private data stream
publication under differential privacy.

Stable Allocation. Stable allocation can be seen as a variation of the sta-
ble marriage matching problem, which can be solved using the Gale-Shapley
algorithm [6]. However, the Gale-Shapley algorithm can only handle matching
scenarios where both sides have strict preference tables. And it does not con-
sider the privacy of individual agents.

Golle [7] proposes Matching Authorities to perform private matching, which
provides privacy and correctness as long as the majority of Matching Authorities
are honest. Keller and Scholl [9] and Doerner et al. [3] use RAM-based secure
computation to implement stable matching. However, all of the above methods
are time-consuming during the matching progress. Hsu et al. [8] have declared
that private matching and allocation problems cannot be solved under differen-
tial privacy. They relax the privacy constraint as joint differential privacy (JDP)
and design a private billboard to achieve JDP.

Private Data Stream Publication under Differential Privacy. Dif-
ferential privacy [4] is an efficient approach to protect location privacy. To
et.al [12] first decompose the spatial using Private Spatiotemporal Decompo-
sition (PSD) [10] and then perform task assignment with obscure task location
geocasted to those near regions with workers with high probability.



Lecture Notes in Computer Science: Authors’ Instructions 245

Dwork et al. [5] focus on private data stream publication and propose a
binary tree technique for finite streams. Chan et al. [2] formalize the differen-
tially private continual counter and design it to achieve ε-differential privacy with
Ø(1ε · (log t)1.5 · log 1

δ ) error with probability 1 − δ. Zhang et al. [15] propose
the Joint Differentially Private Gale-Shapley Mechanism for Location Privacy
Protection. They use the differentially private continual counter to protect pref-
erences. However, it does not consider the distance between different entities.

3 Problem Definition

We define a spatial task as ti and its location as loci. We also define a spatial
worker as wj and its location and capacity as locj and cj respectively. The nota-
tions are summarized in Table 1. We assume that workers are honest and public.
The server is honest-but-curious, which means it will execute required algorithms
correctly but may attempt to obtain information from data and requests. The
tasks are rational, as they seek to maximize their benefits.

Definition 1 ((α, β)-stable matching). Given a set P with size |P | and a set
Q with total capacity |Q.c| satisfying |P | ≤ |Q.c|. A matching M = (Pm, Qm)
is a (α, β)-stable matching, if there exists a stable matching M ′ such that with
probability (1 − β),

∑

i∈M.Pm∪M ′.Pm,(i,j)∈M,(i,j′)∈M ′
|rank(i, j) − rank(i, j′)| ≤ α

where rank(i, j) is the rank of j in i’s preference list.

Definition 2. (Private Stable Task Assignment Problem, PSTAP) Given a
set of spatial tasks T = {t1, t2, ..., tm}, and a set of spatial workers W =
{w1, w2, ..., wn}, the Private Stable Task Assignment Problem aims to find a
(α, β)-stable matching [11] M that ensures the tasks’ location privacy while sat-
isfies the following conditions:

min
∑

ti∈T

∑

wj∈W

xi,j · di,j

s.t. xi,j ∈ {0, 1}
∑

ti∈T

xi,j ≤ cj , ∀j = 1, 2, ..., n

∑

wi∈W

xi,j ≤ 1, ∀i = 1, 2, ...,m

(1)

4 Enhanced Concentric Mechanism

4.1 The Overview of ECM

The main idea of ECM is using the Private Gale-Shapley algorithm [15] to
obtain a stable matching between spatial tasks and spatial workers. This is done
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Table 1. Notations

NotationsDescription

ti the i-th task

wj the j-th worker

T the task set

W the worker set

di,j the real distance from ti to wj

B(j, k) the count-element in B recording the applying
count to the k-th serving area of wj

PRi,W the distance set from ti to all workers

APi the area set of ti in all workers’ serving range

RP
(k)
i the random area set of ti in all workers’ serving range at k-th round

bi the count vector held by ti

cj the capacity of wj

μi the index of worker proposed by ti in the current round

aj,k the k-th serving area of wj

oi(j) the distance rank of wj in ti’s preference list

o−1
i (k) the index of the worker who is in the k-th position in ti’s preference list

rj(i) the area rank of ti in the serving range of wj

Sum(Ci) the noise sum of counters not ranking behind ti’s current applying area

under a differential private streaming counter [2] structure, with preference lists
constructed based on distance. ECM can be divided into the following 4 steps.

Task Preference Construction. At first, Each task ti calculates the
distance di,j between itself and each worker wj . Then ti sorts these dis-
tances in ascending order to construct the preference rank list PRi,W =
{di,o−1

i (1), ..., di,o−1
i (n)}. All of the PRi,W (for i ∈ [m]) together form the tasks’

preference list PRT,W .
Worker Preference Construction. Each worker wj first selects a series

of distance values PDj,A = {drj,1, drj,2, ..., drj,Uj
} in ascending order. wj then

publishes PDj,A to S. Centered at locj , PDj,A divides the plane into Uj + 1
serving range areas PRj,A = {aj,1, aj,2, ..., aj,Uj+1}. The collection of all PRj,A

(for j ∈ [n]) forms the workers’ preference list PRW,A. An example of wj with
U = 4 is illustrated in Figure 1(a).

Area Positioning. After obtaining the ranges of each worker, ti looks up
the range aj,k for wj that satisfies drj,k−1 < di,j ≤ drj,k (recorded as rj(i) = k).
ti keeps track of all workers’ area positions in a list APi = {aj,rj(i)} for each
j ∈ [n]. We provide an instance in Figure 1(b). t1 falls within the serving range
of w1, w2, and w3. It is in a1,3 for w1, a2,2 for w2, and a3,3 for w3. Therefore, the
area positions for t1 are AP1 = {a1,3, a2,2, a3,3}.
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Fig. 1. Area division by workers.

Matching Construction. In this step, all tasks help the server S per-
form task assignment using the private Gale-Shapley algorithm. They hold a
billboard [2,8] to record the application process of the tasks. Each task will iter-
atively apply to a worker in its worker rank list when the task is available. Once
the application process is complete, S assigns the tasks to workers according to
the billboard.

Next, we present the construction of our Enhanced Concentric Mechanism
(ECM) algorithm which is shown in Algorithm 1.

Algorithm 1: ECM
Input: Tasks: ti’s location loci for each i ∈ [m], Workers: wj ’s locations locj ,

range preferences PRj,A and capacity cj
Output: Matching results

1 S initializes the billboard B by setting B(j, s) = BM(ε/2mn, mn2) for each
j ∈ [n] and s ∈ [Uj ];

2 Each task ti gets its rank of workers PRi,W ;
3 Set RT as the tasks with candidate workers in PRT,W ;
4 while RT is not empty do
5 for ti ∈ RT do
6 Initializes current applying worker wa as the next element in PRi,W ;
7 Set bi(a) = B(a, ra(i));
8 Set bi(j) = B(j, random(APj))) for wj ∈ PRi,W \wa;
9 Update bi by executing Private Gale-Shapley algorithm [15];

10 ti sends bi to S;
11 S updates B by bi;

12 Each ti sends its μ(i) to S;
13 S gets the matching M by μ(i) for i ∈ [m];
14 return B;
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We provide an example in Figure 1(b) and Figure 2. Suppose there are 4
tasks: t1, t2, t3, and 3 workers: w1, w2, w3. At the beginning, w1, w2, and
w3 publish their serving distances, locations and capacities (The first table in
Figure 2). The serving distances of the workers divide the plane into multiple
areas (as shown in the second table in Figure 2) which form the preference list
of all workers. After that, all tasks construct their preference tables for workers.
S holds a billboard B. In B, each element is a counter and initialized as 0.

Fig. 2. Task assignment under ECM.

In the first round, t1, t2, and t3 first set their counter vectors b1, b2, and b3
as the billboard values in the related areas. For example, t1 want to apply to w1,
it sets b1 as B(1, 3). t1 randomly chooses areas for w3 and w2 (suppose they are
a3,1 and a2,2), and set b1(3) as B(3, 1), b1(2) as B(2, 2). Then, t1 feeds private
1 (e.g., 0.8) to b1(1), which means it sets B(1, 3) = 0.8, and feeds private 0 to
b1(3) and b1(2) (i.e., B(3, 1) = 0,B(2, 2) = 0). After that, it calculates the sum
C1 = B(1, 1) + B(1, 2) + B(1, 3) = 0.8. t1 checks if C1 ≤ c1 (c1 = 1). Since this
condition is satisfied, t1 sets its assignment worker index μ1 as 1. In the same
way, t2, t3, and t4 set μ2, μ3, and μ4 as 2, 1, and 3 respectively. In the second
round, t1 calculates the sum C ′

1 = B(1, 1)+B(1, 2)+B(1, 3) = 1.5 > c1. It then
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applies to the next worker w3. t1 feeds private 1 (e.g., 1.2) to b1(3), which means
it sets B(3, 3) = 1.2, and feeds private 0 to b1(1) and b1(2) (i.e., B(1, 1) = 0,
B(2, 3) = 0). After that, it calculates the sum C1 = B(3, 1)+B(3, 2)+B(3, 3) =
2 ≤ c3 (c3 = 2). Thus, t1 sets μ1 as 3. t2, t3, and t4 calculate their sums
C2 ≤ c2, C3 ≤ c1, and C4 ≤ c3 respectively. Therefore, they feed private 0 to all
elements in b2, b3, and b4. In the third round, there are no assignment changes,
and thus the applying process terminates.

4.2 Performance Analysis

Time cost. In our ECM, each task applies to at most n workers, and there are
m tasks. Therefore, there will be an application time complexity of O(mn). For
each application, a task feeds n data, resulting in a computation complexity of
O(mn2).

Accuracy. Let ZA = maxj∈[n] Uj+1 represent the maximum area size among
all workers. Let G(aj,k) =

∑
i∈[m],APi�aj,k

1 denote the task size in area aj,k. Let
GT = maxj∈[n],aj,k∈PRj,A

G(aj,k) denote the maximal task size among all areas.

Let FT = maxj∈[n],aj,k∈PRj,A

(
n−1
Uj

· (m − G(aj,k)) + G(aj,k)
)

be the maximal
average applying times among all areas. We present Theorem 1 below.

Theorem 1. ECM satisfies (α, β)-useful and (α, β)-stable matching where α =
4
√
2·ZA·mn

ε ·ln ( 2
1− ZA

√
1−β

)·(√log (GT · n))5. Furthermore, ECM satisfies (αA, β)-

useful where exp (αA) = 4
√
2·ZA·mn

ε · ln ( 2
1− ZA

√
1−β

) · (
√

log FT )5 with αA ≤ α.

Privacy. Next, we provide the privacy and security guarantees of our ECM.

Theorem 2. ECM is ε-joint differentially private.

5 Experiment

5.1 Data Sets

Real Data Set. We conducted our experiments on Didi Chuxing [1] in Chengdu,
China (referred to as chengdu). We utilized the node file chengdu.node, which
contains the coordinates of 214,440 vertices in Chengdu’s road network. We
randomly divide these vertices into two parts to represent tasks and workers.
Synthetic Data Sets. We generate a synthetic data sets: uniform data nodes
(denoted as uniform). uniform consists of 100,000 points extracted from a 2-
dimensional uniform distribution. We randomly divide these points into two
data sets to represent tasks and workers.
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5.2 Experimental Setup

We randomly extract points from data sets to create data scales of different sizes.
Let ST and SW represent the sets of tasks and workers, respectively. We define
the value pt = |ST |

|SW | as the task ratio. We costruct the Basic Concentric Mecha-
nism (BCM) by replace choosing randomly area as choosing real area (Set the
step in Line 7 and 8 as bi(j) = B(j, rj(i)) for all wj ∈ PRi,W ). We construct a
non-private scheme of BCM by using non-private counters in the billboard. We
refer to this scheme as Non-private Basic Concentric Mechanism (NP-BCM). For
the worker preferences in the Joint Differentially Private Gale-Sharley Mecha-
nism [15], we use random preferences and denote it as Joint Differnetially Private
Gale-Shapley with Random Worker Preferences (JDP-GS-RWP). We then com-
pare BCM and ECM with NP-BCM and JDP-GS-RWP.

We examine the impact of various factors such as data scale, task ratio (pt),
worker capacity (c), ring radius (the distance between neighboring serving cir-
cles), serving circle number, and total privacy budget (ε) on the Average Run-
ning Time (TimeAV G), Average Receiving Distance (RDAV G), and Average
Task Rank Value (TRVAV G). The parameter settings are presented in Table 2.

Table 2. Settings for different factors

Parameters Value range Default value

data scale (|D|) 200, 400, 600, 800, 1000200

task ratio (pt) 4, 5, 6, 7, 8 6

worker capacity (c) 1, 2, 3, 4, 5 4

ring radius 600, 700, 800, 900, 10001000

serving circle number 60, 80, 100, 120, 140 100

total privacy budget (ε)100, 200, 300, 400, 500 300

5.3 Experiment Results

1) Average Time Cost: Figure 3(a) and Figure 3(b) display the average time
cost for data scales ranging from 200 to 1000. We observe that the running time
increases quadratically with the data scale. Figure 3(c) and Figure 3(d) illustrate
the average time cost for task ratios ranging from 4 to 8. We observe that as
the task ratio increases, the running time decreases. This is because with more
tasks, the smaller workers can complete the tasks more quickly. Additionally,
the running time of the non-private mechanism is significantly smaller than that
of the private mechanisms.

2) Average Receiving Distance: Figure 4 illustrates the impact of various fac-
tors on average distance. We observe that the receiving distance decreases as the
task ratio increases. This is because workers can receive more tasks with a lower
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Fig. 3. The impact of data scale and task ratio on the time cost.

distance. Additionally, the receiving distance increases as the worker capacity
increases. This is because a larger worker capacity slows down the competi-
tion in smaller ranges and reduces the overall distance. Furthermore, BCM and
ECM consistently outperform the JDP-GS-RWP in these parameters for both
the chengdu and uniform data sets.

Fig. 4. The impact on average receiving distance.

3) Average Task Rank Value: Figure 5 shows the average task rank value
for different ring radius and circle numbers. We can observe that both BCM
and ECM consistently outperform JDP-GS-RWP in the chengdu and uniform
data sets. From Figure 5(a) and Figure 5(b), we can see that there is a slight
impact on the average task rank value as the ring radius varies. The average task
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rank value generally increases and then decreases as the ring radius increases in
BCM, ECM, and NP-BCM. Similarly, from Figure 5(c) and Figure 5(d), we can
see that the serving circle number also has a slight influence on the task rank
value. The average task rank value generally increases and then decreases as the
serving circle number increases in BCM, ECM, and NP-BCM.

Fig. 5. The impact of data scale and task ratio on the average task rank value.

6 Conclusion

In this paper, we investigate the problem of stable allocation with location pro-
tection. To safeguard the location information of tasks, we transform it into
preference information and present the ECM. Our experiments demonstrate that
ECM exhibit improved efficiency and accuracy compared to the state-of-the-art
work (Joint Differentially Private Gale-Shapley Mechanisms) with random pref-
erences for workers and do not significantly decrease compared to the non-privacy
scheme.
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